Description Usage Arguments Details Author(s) Examples
Given a vector of sequences, built a position-specific scoring matrix (PSSM) with different derived statistics (counts, frequencies, probabilities, weights, information content).
1 2 |
sequences |
vector of strings corresponding to biological sequences (DNA, RNA, proteins) |
prior=NULL |
vector of residue prior probabilities (names must correspond to residues) |
pseudo.count=2 |
pseudo-count |
IC.log.base=2 |
Logarithmic base for the information content |
case.sensitive=FALSE |
by default residues are considered case-insensitive and converted to uppercases. |
First version: 2016-12-23 Last modification: 2016-12
Jacques van Helden (Jacques.van-Helden@univ-amu.fr)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | ## Define the sequences of yeast Met31p binding sites
sequences <- c(
"MET28"="cgcccAAAACTGTGGtgttag",
"MET3"="gttgtAAAACTGTGGCTTTGT",
"MUP3"="cggaaAAAACTGTGGcgtcgc",
"SAM1"="acaggAAAACTGTGGtggcgc",
"SAM2"="gcttgAAAACTGTGGcgtttt",
"MET6"="gtcgcAAAACTGTGGtagtca",
"MET30"="ccgcgCAAACTGTGGcttccc",
"ZWF1"="ataagCAAACTGTGGgttcat",
"MET14"="cctcaAAAAATGTGGcaatgg",
"MET17"="tcatgAAAACTGTGTaacata",
"MET2"="tgcaaAAAATTGTGGatgcac",
"MET8"="ggaaaAAAAATGTGAaaatcg",
"MET1"="cataaTAAACTGTGAacggac")
## Chose priors based on yeast non-coding sequences
prior <- c("A"=0.32, "C"=0.18, "G"=0.18, "T"=0.32)
## Build the PSSM
pssm <- seqToPSSM(seq=sequences, prior = prior)
## Print count table
print(pssm$counts)
## Print weight matrix
signif(pssm$weights, digits=2)
## Plot a heatmap with the weights
heatmap.simple(pssm$counts, auto.margins=FALSE, xlab="Position",
ylab="Residues", main="Yeast Met13p count matrix", las=1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.