test_that(
desc = "correct functioning of mtab2df: glm",
code = {
local_edition(3)
local_reproducible_output(rstudio = TRUE)
set.seed(1)
dataset <- data.table::data.table(
"var1" = factor(sample(
x = c("yes", "no"),
size = 100,
replace = TRUE,
prob = c(.3, .7)
)),
"var2" = factor(sample(
x = c("yes", "no"),
size = 100,
replace = TRUE
)),
"var3" = rnorm(100)
)
# models
m0 <- stats::glm(
var1 ~ 1,
data = dataset,
family = binomial(link = "logit")
)
m1 <- stats::glm(
var1 ~ var2,
data = dataset,
family = binomial(link = "logit")
)
m2 <- stats::glm(
var1 ~ var2 + var3,
data = dataset,
family = binomial(link = "logit")
)
m_table <- sjPlot::tab_model(m0, m1, m2, show.aic = TRUE)
final_tab <- sjtable2df::mtab2df(mtab = m_table, n_models = 3)
expect_type(final_tab, "list")
expect_true(inherits(final_tab, "data.table"))
expect_true(nrow(final_tab) == 6)
expect_snapshot(
x = final_tab,
cran = FALSE,
error = FALSE
)
final_tab <- sjtable2df::mtab2df(
mtab = m_table,
n_models = 3,
output = "data.frame"
)
expect_type(final_tab, "list")
expect_true(inherits(final_tab, "data.frame"))
expect_snapshot(
x = final_tab,
cran = FALSE,
error = FALSE
)
final_tab <- sjtable2df::mtab2df(
mtab = m_table,
n_models = 3,
output = "kable"
)
expect_type(final_tab, "character")
expect_true(inherits(final_tab, "knitr_kable"))
}
)
test_that(
desc = "correct functioning of mtab2df: glmer",
code = {
local_edition(3)
local_reproducible_output(rstudio = TRUE)
set.seed(1)
dataset <- data.table::data.table(
"var1" = factor(sample(
x = c("yes", "no"),
size = 100,
replace = TRUE,
prob = c(.3, .7)
)),
"var2" = factor(sample(
x = c("yes", "no"),
size = 100,
replace = TRUE
)),
"var3" = rnorm(100),
"var4" = c(rep(1, 25), rep(2, 25), rep(3, 25), rep(4, 25))
)
# models
m1 <- lme4::glmer(
var1 ~ var2 + (1 | var4),
data = dataset,
family = binomial(link = "logit")
)
m2 <- lme4::glmer(
var1 ~ var2 + var3 + (1 | var4),
data = dataset,
family = binomial(link = "logit")
)
m_table <- sjPlot::tab_model(m1, m2, show.aic = TRUE)
final_tab <- sjtable2df::mtab2df(mtab = m_table, n_models = 2)
expect_type(final_tab, "list")
expect_true(inherits(final_tab, "data.table"))
expect_snapshot(
x = final_tab,
cran = FALSE,
error = FALSE
)
final_tab <- sjtable2df::mtab2df(
mtab = m_table,
n_models = 2,
output = "data.frame"
)
expect_type(final_tab, "list")
expect_true(inherits(final_tab, "data.frame"))
expect_snapshot(
x = final_tab,
cran = FALSE,
error = FALSE
)
final_tab <- sjtable2df::mtab2df(
mtab = m_table,
n_models = 2,
output = "kable"
)
expect_type(final_tab, "character")
expect_true(inherits(final_tab, "knitr_kable"))
}
)
test_that(
desc = "correct functioning of mtab2df with significance: glm",
code = {
local_edition(3)
local_reproducible_output(rstudio = TRUE)
set.seed(1)
dataset <- data.table::data.table(
"var1" = factor(sample(
x = c("yes", "no"),
size = 100,
replace = TRUE,
prob = c(.3, .7)
)),
"var2" = factor(sample(
x = c("yes", "no"),
size = 100,
replace = TRUE
)),
"var3" = rnorm(100)
)
# models
m0 <- stats::glm(
var1 ~ 1,
data = dataset,
family = binomial(link = "logit")
)
m1 <- stats::glm(
var1 ~ var2,
data = dataset,
family = binomial(link = "logit")
)
m2 <- stats::glm(
var1 ~ var2 + var3,
data = dataset,
family = binomial(link = "logit")
)
m_table <- sjPlot::tab_model(m0, m1, m2,
show.aic = TRUE,
p.style = "numeric_star")
final_tab <- sjtable2df::mtab2df(mtab = m_table, n_models = 3)
expect_type(final_tab, "list")
expect_true(inherits(final_tab, "data.table"))
expect_true(nrow(final_tab) == 7)
empty_other_cols <- vapply(
X = final_tab[nrow(final_tab), 2:ncol(final_tab)],
FUN = function(x) {
# has column >1 empty string?
"" == x
},
FUN.VALUE = logical(1)
)
expect_true(sum(empty_other_cols) == ncol(final_tab) - 1)
}
)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.