#' Levene test
#'
#' Levene's test and Brown-Forsythe test for equality of variances
#' between groups on each row/column of the input matrix.
#'
#' NA values are always ommited.
#' If values are missing for a whole group - that group is discarded.
#'
#' \code{row_levene(x, g)} - Levene's test on rows.
#' \code{col_levene(x, g)} - Levene's test on columns.
#'
#' \code{row_brownforsythe(x, g)} - Brown-Forsythe test on rows.
#' \code{col_brownforsythe(x, g)} - Brown-Forsythe test on columns.
#'
#' @note Difference between Levene's test and Brown-Forsythe test is that
#' the Brown-Forsythe test uses the median instead of the mean in computing the
#' spread within each group. Many software implementations use the name
#' "Levene's test" for both variants.
#'
#' @param x numeric matrix.
#' @param g a vector specifying group membership for each observation of x.
#'
#' @return a data.frame where each row contains the results of the Levene's test
#' performed on the corresponding row/column of x.\cr\cr
#' Each row contains the following information (in order):\cr
#' 1. obs.tot - total number of observations\cr
#' 2. obs.groups - number of groups\cr
#' 3. df.between - between group (treatment) degrees of freedom\cr
#' 4. df.within - within group (residual) degrees of freedom\cr
#' 5. statistic - F statistic\cr
#' 6. pvalue - p.value
#'
#' @seealso \code{\link[car]{leveneTest}}
#'
#' @examples
#' col_levene(iris[,1:4], iris$Species)
#' row_brownforsythe(t(iris[,1:4]), iris$Species)
#'
#' @author Karolis Koncevičius
#' @name levene
#' @export
row_levene <- function(x, g) {
is.null(x)
is.null(g)
if(is.vector(x))
x <- matrix(x, nrow=1)
if(is.data.frame(x) && all(sapply(x, is.numeric)))
x <- data.matrix(x)
assert_numeric_mat_or_vec(x)
assert_vec_length(g, ncol(x))
if(anyNA(g)) {
bad <- is.na(g)
x <- x[,!bad, drop=FALSE]
g <- g[!bad]
warning(sum(bad), ' columns dropped due to missing group information')
}
g <- as.character(g)
gs <- unique(g)
hasinfx <- is.infinite(x)
x[hasinfx] <- NA
hasinfx <- rowSums(hasinfx) > 0
nPerGroup <- matrix(numeric(), nrow=nrow(x), ncol=length(gs))
mPerGroup <- vPerGroup <- nPerGroup
for(i in seq_along(gs)) {
tmpx <- x[,g==gs[i], drop=FALSE]
tmpx <- abs(tmpx - rowMeans(tmpx, na.rm=TRUE))
x[,g==gs[i]] <- tmpx
nPerGroup[,i] <- ncol(tmpx) - matrixStats::rowCounts(tmpx, value=NA)
mPerGroup[,i] <- rowMeans(tmpx, na.rm=TRUE)
vPerGroup[,i] <- rowVars(tmpx, n=nPerGroup[,i], m=mPerGroup[,i], na.rm=TRUE)
}
nSamples <- rowSums(nPerGroup)
nGroups <- matrixStats::rowCounts(nPerGroup!=0)
M <- rowMeans(x, na.rm=TRUE)
betweenScatter <- rowSums(nPerGroup * (mPerGroup-M)^2, na.rm=TRUE)
withinScatter <- rowSums((nPerGroup-1) * vPerGroup, na.rm=TRUE)
dft <- nGroups-1
dfr <- nSamples-nGroups
F <- (betweenScatter/dft) / (withinScatter/dfr)
p <- stats::pf(F, dft, dfr, lower.tail=FALSE)
w1 <- hasinfx
showWarning(w1, 'levene', 'had infinite observations that were removed')
w2 <- nGroups < 2
showWarning(w2, 'levene', 'had less than 2 groups with enough observations')
w3 <- !w2 & all(nPerGroup < 3)
showWarning(w3, 'levene', 'had no groups with at least 3 observations')
w4 <- !w2 & !w3 & withinScatter==0
showWarning(w4, 'levene', 'had zero within group variance of absolute residuals from the mean')
w5 <- !w2 & !w3 & !w4 & withinScatter <= .Machine$double.eps
showWarning(w5, 'levene', 'had essentially constant absolute residuals from the mean: results might be unreliable')
dft[w2 | w3 | w4] <- NA
dfr[w2 | w3 | w4] <- NA
F[w2 | w3 | w4] <- NA
p[w2 | w3 | w4] <- NA
rnames <- rownames(x)
if(!is.null(rnames)) rnames <- make.unique(rnames)
data.frame(obs.tot=nSamples, obs.groups=nGroups,
df.between=dft, df.within=dfr, statistic=F, pvalue=p,
row.names=rnames
)
}
#' @rdname levene
#' @export
col_levene <- function(x, g) {
row_levene(t(x), g)
}
#' @rdname levene
#' @export
row_brownforsythe <- function(x, g) {
is.null(x)
is.null(g)
if(is.vector(x))
x <- matrix(x, nrow=1)
if(is.data.frame(x) && all(sapply(x, is.numeric)))
x <- data.matrix(x)
assert_numeric_mat_or_vec(x)
assert_vec_length(g, ncol(x))
if(anyNA(g)) {
bad <- is.na(g)
x <- x[,!bad, drop=FALSE]
g <- g[!bad]
warning(sum(bad), ' columns dropped due to missing group information')
}
g <- as.character(g)
gs <- unique(g)
hasinfx <- is.infinite(x)
x[hasinfx] <- NA
hasinfx <- rowSums(hasinfx) > 0
nPerGroup <- matrix(numeric(), nrow=nrow(x), ncol=length(gs))
mPerGroup <- vPerGroup <- nPerGroup
for(i in seq_along(gs)) {
tmpx <- x[,g==gs[i], drop=FALSE]
tmpx <- abs(tmpx - matrixStats::rowMedians(tmpx, na.rm=TRUE))
x[,g==gs[i]] <- tmpx
nPerGroup[,i] <- ncol(tmpx) - matrixStats::rowCounts(tmpx, value=NA)
mPerGroup[,i] <- rowMeans(tmpx, na.rm=TRUE)
vPerGroup[,i] <- rowVars(tmpx, n=nPerGroup[,i], m=mPerGroup[,i], na.rm=TRUE)
}
nSamples <- rowSums(nPerGroup)
nGroups <- matrixStats::rowCounts(nPerGroup!=0)
M <- rowMeans(x, na.rm=TRUE)
betweenScatter <- rowSums(nPerGroup * (mPerGroup-M)^2, na.rm=TRUE)
withinScatter <- rowSums((nPerGroup-1) * vPerGroup, na.rm=TRUE)
dft <- nGroups-1
dfr <- nSamples-nGroups
F <- (betweenScatter/dft) / (withinScatter/dfr)
p <- stats::pf(F, dft, dfr, lower.tail=FALSE)
w1 <- hasinfx
showWarning(w1, 'brownforsythe', 'had infinite observations that were removed')
w2 <- nGroups < 2
showWarning(w2, 'brownforsythe', 'had less than 2 groups with enough observations')
w3 <- !w2 & all(nPerGroup < 3)
showWarning(w3, 'brownforsythe', 'had no groups with at least 3 observations')
w4 <- !w2 & !w3 & withinScatter==0
showWarning(w4, 'brownforsythe', 'had zero within group variance of absolute residuals from the median')
w5 <- !w2 & !w3 & !w4 & withinScatter <= .Machine$double.eps
showWarning(w5, 'brownforsythe', 'had essentially constant absolute residuals from the median: results might be unreliable')
dft[w2 | w3 | w4] <- NA
dfr[w2 | w3 | w4] <- NA
F[w2 | w3 | w4] <- NA
p[w2 | w3 | w4] <- NA
rnames <- rownames(x)
if(!is.null(rnames)) rnames <- make.unique(rnames)
data.frame(obs.tot=nSamples, obs.groups=nGroups,
df.between=dft, df.within=dfr, statistic=F, pvalue=p,
row.names=rnames
)
}
#' @rdname levene
#' @export
col_brownforsythe <- function(x, g) {
row_brownforsythe(t(x), g)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.