library(matrixTests)
#--- functions -----------------------------------------------------------------
nortest_andersondarling <- function(mat) {
if(is.vector(mat)) mat <- matrix(mat, nrow=1)
n <- st <- p <- numeric(nrow(mat))
for(i in 1:nrow(mat)) {
vec <- na.omit(mat[i,])
res <- nortest::ad.test(x=as.numeric(vec))
n[i] <- length(vec)
st[i] <- res$statistic
p[i] <- res$p.value
}
data.frame(obs=n, statistic=st, pvalue=p)
}
#--- montecarlo ----------------------------------------------------------------
# 10 observations
x <- matrix(rnorm(10000), ncol=10)
res1 <- nortest_andersondarling(x)
res2 <- row_andersondarling(x)
stopifnot(all.equal(res1, res2))
# 100 observations
x <- matrix(rnorm(100000), ncol=100)
res1 <- nortest_andersondarling(x)
res2 <- row_andersondarling(x)
stopifnot(all.equal(res1, res2))
# 20 observations - highly non normal
x <- cbind(matrix(runif(10000), ncol=10), matrix(runif(10000, 10, 11), ncol=10))
res1 <- nortest_andersondarling(x)
res2 <- row_andersondarling(x)
stopifnot(all.equal(res1, res2))
#--- extreme numbers -----------------------------------------------------------
# big numbers
x <- c(100000000000004, 100000000000002, 100000000000003, 100000000000000,
100000000000003, 100000000000002, 100000000000003, 100000000000000
)
res1 <- nortest_andersondarling(x)
res2 <- row_andersondarling(x)
stopifnot(all.equal(res1, res2))
# small numbers
x <- c(1.00000000000004, 1.00000000000002, 1.00000000000003, 1.00000000000000,
1.00000000000003, 1.00000000000002, 1.00000000000003, 1.00000000000000
)
res1 <- nortest_andersondarling(x)
res2 <- row_andersondarling(x)
stopifnot(all.equal(res1, res2))
# extremely non normal
x <- 1:10000
res1 <- nortest_andersondarling(x)
res2 <- row_andersondarling(x)
stopifnot(all.equal(res1, res2))
# NOTE: turned-off because of precission errors on architectures without long doubles
# large sample
# x <- rnorm(10^6)
# res1 <- nortest_andersondarling(x)
# res2 <- row_andersondarling(x)
# stopifnot(all.equal(res1, res2))
# TODO: add tests for Inf and -Inf values once decided how to handle them.
#--- minimal sample size -------------------------------------------------------
# eight numbers
x <- rnorm(8)
res1 <- nortest_andersondarling(x)
res2 <- row_andersondarling(x)
stopifnot(all.equal(res1, res2))
# eight numbers with NAs
x <- c(NA, rnorm(8))
res1 <- nortest_andersondarling(x)
res2 <- row_andersondarling(x)
stopifnot(all.equal(res1, res2))
# nine numbers
x <- rnorm(9)
res1 <- nortest_andersondarling(x)
res2 <- row_andersondarling(x)
stopifnot(all.equal(res1, res2))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.