Description Usage Arguments Value Examples
View source: R/predict_readability.R
Predicts the lambda for a given text in newdata
, from a fitted
Bradley-Terry model object object
.
1 2 3 4 5 6 7 8 9 | predict_readability(
object,
newdata = NULL,
reference_top = -2.1763368548,
reference_bottom = -3.865467,
bootstrap_n = 0,
baseline_year = 2000,
verbose = FALSE
)
|
object |
a fitted |
newdata |
a character or corpus object containing the
texts whose readability values will be predicted. If omitted, the fitted
values from |
reference_top, reference_bottom |
the lambda values of a text
against which each predicted text will be compared for difficulty or rescaled. The
default value for |
bootstrap_n |
number of bootstrap replicates for computing intervals |
baseline_year |
a scalar or vector of the baseline years to choose for reference: a year ending in 0 from 1790-2000 |
verbose |
logical; if |
a data.frame with the rows named to the text names, and the columns consisting of:
lambda
estimated lambda for each text
prob
the probability that the text is easier than the
reference lambda, the default of which is lambda applied to all of
data_corpus_fifthgrade()
scaled
a rescaled lambda on a scale of "ease" ranging from 0-100, where 100 and 0 are determined by the fifth grade texts and the hardest text from the State of the Union corpus, respectively, unless specified by the user
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | ## Not run:
head(predict_readability(data_BTm_bms))
## lambda prob scaled
## 100014 -3.296731 0.24593816 60.51612
## 100028 -3.190470 0.26617180 64.26088
## 100029 -3.719532 0.17607128 45.61617
## 100033 -4.703668 0.07396423 10.93416
## 100034 -3.289739 0.24723716 60.76252
## 100045 -2.780185 0.35346383 78.71976
txts <- c(fifthgrade = paste(as.character(data_corpus_fifthgrade), collapse = " "),
data_corpus_inaugural[c(1:2, 9:10, 54:58)])
predict_readability(data_BTm_bms, newdata = txts)
## lambda prob scaled
## fifthgrade -2.128336 0.51199792 102.84175
## 1789-Washington -5.494969 0.03493749 -96.46991
## 1793-Washington -2.852801 0.33705102 59.95195
## 1821-Monroe -3.629638 0.18949402 13.96156
## 1825-Adams -4.138627 0.12321942 -16.17163
## 2001-Bush -2.273380 0.47575815 94.25482
## 2005-Bush -2.583155 0.39967525 75.91551
## 2009-Obama -2.529601 0.41259115 79.08604
## 2013-Obama -2.747889 0.36087883 66.16295
## 2017-Trump -2.359702 0.45428669 89.14440
years <- c(2000, as.integer(substring(names(txts)[-1], 1, 4)))
predict_readability(data_BTm_bms, newdata = txts, baseline_year = years)
## lambda prob scaled
## fifthgrade -2.128338 0.51199736 102.84162
## 1789-Washington -5.494972 0.03493741 -96.47004
## 1793-Washington -2.852803 0.33705052 59.95182
## 1821-Monroe -3.629640 0.18949368 13.96143
## 1825-Adams -4.138629 0.12321918 -16.17177
## 2001-Bush -2.273383 0.47575759 94.25469
## 2005-Bush -2.583158 0.39967471 75.91538
## 2009-Obama -2.529603 0.41259061 79.08591
## 2013-Obama -2.747891 0.36087832 66.16282
## 2017-Trump -2.359704 0.45428614 89.14426
names(txts) <- gsub("ington", "", names(txts))
pr <- predict_readability(data_BTm_bms, newdata = txts[c(1:3, 9:10)], bootstrap_n = 100)
format(pr, digits = 4)
## lambda prob scaled lambda_lo lambda_hi prob_lo prob_hi scaled_lo scaled_hi
## fifthgrade -2.172 0.50105 100.15 -2.210 -2.135 0.491591 0.51032 98.81 101.455
## 1789-Wash -5.676 0.02931 -23.35 -6.917 -4.870 0.008664 0.06336 -67.06 5.076
## 1793-Wash -3.560 0.20036 51.22 -4.524 -2.609 0.087218 0.39358 17.25 84.765
## 2013-Obama -2.791 0.35107 78.35 -2.914 -2.645 0.323485 0.38483 74.00 83.469
## 2017-Trump -2.381 0.44904 92.79 -2.511 -2.213 0.417178 0.49080 88.22 98.704
predict_readability(data_BTm_bms, newdata = "The cat in the hat ate green eggs and ham.")
## lambda prob scaled
## 1 -1.125721 0.7408932 137.0248
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.