dev/R_igraph/epi.R

#   IGraph R package
#   Copyright (C) 2014  Gabor Csardi <csardi.gabor@gmail.com>
#   334 Harvard street, Cambridge, MA 02139 USA
#   
#   This program is free software; you can redistribute it and/or modify
#   it under the terms of the GNU General Public License as published by
#   the Free Software Foundation; either version 2 of the License, or
#   (at your option) any later version.
#
#   This program is distributed in the hope that it will be useful,
#   but WITHOUT ANY WARRANTY; without even the implied warranty of
#   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
#   GNU General Public License for more details.
#   
#   You should have received a copy of the GNU General Public License
#   along with this program; if not, write to the Free Software
#   Foundation, Inc.,  51 Franklin Street, Fifth Floor, Boston, MA
#   02110-1301 USA
#
###################################################################

#' @export

time_bins <- function(x, middle=TRUE)
  UseMethod("time_bins")

#' @method time_bins sir
#' @rdname sir
#' @export
#' @importFrom stats IQR

time_bins.sir <- function(x, middle=TRUE) {
  sir <- x
  if (!inherits(sir, "sir")) {
    stop("This is not an SIR model output")
  }

  big.time <- unlist(sapply(sir, "[[", "times"))
  medlen <- median(sapply(lapply(sir, "[[", "times"), length))
  ## Adhoc use of Freedman-Diaconis binwidth; rescale time accordingly.
  w <- 2 * IQR(big.time) / (medlen^(1/3))
  minbt <- min(big.time) ; maxbt <- max(big.time)
  res <- seq(minbt, maxbt, length.out=ceiling((maxbt - minbt)/w))
  if (middle) { res <- (res[-1] + res[-length(res)]) / 2 }
  res
}

#' @importFrom stats median
#' @method median sir
#' @rdname sir
#' @export

median.sir <- function(x, na.rm=FALSE, ...) {
  sir <- x
  if (!inherits(sir, "sir")) {
    stop("This is not an SIR model output")
  }
  times <- unlist(sapply(sir, "[[", "times"))
  big.N.NS <- unlist(sapply(sir, "[[", "NS"))
  big.N.NI <- unlist(sapply(sir, "[[", "NI"))
  big.N.NR <- unlist(sapply(sir, "[[", "NR"))
  time.bin <- cut(times, time_bins(sir, middle=FALSE), include.lowest=TRUE)
  NS <- tapply(big.N.NS, time.bin, median, na.rm=na.rm)
  NI <- tapply(big.N.NI, time.bin, median, na.rm=na.rm)
  NR <- tapply(big.N.NR, time.bin, median, na.rm=na.rm)
  list(NS=NS, NI=NI, NR=NR)
}

#' @importFrom stats quantile
#' @method quantile sir
#' @rdname sir
#' @export

quantile.sir <- function(x, comp=c("NI", "NS", "NR"), prob, ...) {
  sir <- x
  if (!inherits(sir, "sir")) {
    stop("This is not an SIR model output")
  }
  comp <- toupper(igraph.match.arg(comp))
  times <- unlist(sapply(sir, "[[", "times"))
  big.N <- unlist(sapply(sir, function(x) { x[[comp]] }))
  time.bin <- cut(times, time_bins(sir, middle=FALSE), include.lowest=TRUE)
  res <- lapply(prob, function(pp) {
    tapply(big.N, time.bin, function(x) { quantile(x, prob=pp) })
  })
  if (length(res) == 1) {
    res <- res[[1]]
  }
  res
}

# R function to plot compartment total curves from simul.net.epi .
# Inputs:  sim.res :=  list of simulated network SIR processes
#             comp := compartment (i.e., "NS", "NI", or "NR")
#                q := vector of lower and upper quantiles, resp
#             cols := char vector of colors for lines, median, and quantiles, resp.
# Outputs:  None.  Just produces the plot of all compartment curves, 
#           with median and quantiles.



#' Plotting the results on multiple SIR model runs
#' 
#' This function can conveniently plot the results of multiple SIR model
#' simulations.
#' 
#' The number of susceptible/infected/recovered individuals is plotted over
#' time, for multiple simulations.
#' 
#' @param x The output of the SIR simulation, coming from the \code{\link{sir}}
#' function.
#' @param comp Character scalar, which component to plot. Either \sQuote{NI}
#' (infected, default), \sQuote{NS} (susceptible) or \sQuote{NR} (recovered).
#' @param median Logical scalar, whether to plot the (binned) median.
#' @param quantiles A vector of (binned) quantiles to plot.
#' @param color Color of the individual simulation curves.
#' @param median_color Color of the median curve.
#' @param quantile_color Color(s) of the quantile curves. (It is recycled if
#' needed and non-needed entries are ignored if too long.)
#' @param lwd.median Line width of the median.
#' @param lwd.quantile Line width of the quantile curves.
#' @param lty.quantile Line type of the quantile curves.
#' @param xlim The x limits, a two-element numeric vector. If \code{NULL}, then
#' it is calculated from the data.
#' @param ylim The y limits, a two-element numeric vector. If \code{NULL}, then
#' it is calculated from the data.
#' @param xlab The x label.
#' @param ylab The y label. If \code{NULL} then it is automatically added based
#' on the \code{comp} argument.
#' @param \dots Additional arguments are passed to \code{plot}, that is run
#' before any of the curves are added, to create the figure.
#' @return Nothing.
#' @author Eric Kolaczyk (\url{http://math.bu.edu/people/kolaczyk/}) and Gabor
#' Csardi \email{csardi.gabor@@gmail.com}.
#' @seealso \code{\link{sir}} for running the actual simulation.
#' @references Bailey, Norman T. J. (1975). The mathematical theory of
#' infectious diseases and its applications (2nd ed.). London: Griffin.
#' @method plot sir
#' @export
#' @importFrom graphics plot lines
#' @keywords graphs
#' @examples
#' 
#' g <- sample_gnm(100, 100)
#' sm <- sir(g, beta=5, gamma=1)
#' plot(sm)
#' 
plot.sir <- function(x, comp=c("NI", "NS", "NR"),
                     median=TRUE, quantiles=c(0.1, 0.9), color=NULL,
                     median_color=NULL, quantile_color=NULL,
                     lwd.median=2, lwd.quantile=2, lty.quantile=3,
                     xlim=NULL, ylim=NULL, xlab="Time", ylab=NULL, ...) {

  sir <- x

  if (!inherits(sir, "sir")) {
    stop("This is not an SIR model output")
  }
  comp <- toupper(igraph.match.arg(comp))
  if (!all(quantiles >= 0 & quantiles <= 1)) {
    stop("Quantiles should be in [0,1]")
  }
  
  if (is.null(color)) {
    color <- c(NI="skyblue", NS="pink", NR="palegoldenrod")[comp]
  }
  if (is.null(median_color)) {
    median_color <- c(NI="blue", NS="red", NR="gold")[comp]
  }
  if (is.null(quantile_color)) {
    quantile_color <- c(NI="blue", NS="red", NR="gold")[comp]
  }
  quantile_color <- rep(quantile_color, length.out=length(quantiles))

  ns <- length(sir)
  if (is.null(xlim)) {
    xlim <- c(0, max(sapply(sir, function(x) max(x$times))))
  }
  if (is.null(ylim)) {
    ylim <- c(0, max(sapply(sir, function(x) max(x[[comp]]))))
  }

  ## Generate the plot, first with individual curves, and then 
  ## adding median and quantile curves.

  if (is.null(ylab)) {
    if (comp == "NI") { ylab <- expression(N[I](t)) }
    if (comp == "NR") { ylab <- expression(N[R](t)) }
    if (comp == "NS") { ylab <- expression(N[S](t)) }
  }

  # Plot the stochastic curves individually.
  plot(0, 0, type="n", xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, ...)
  lapply(seq_along(sir), function(i) {
    lines(sir[[i]]$time, sir[[i]][[comp]], col=color[1])
  })

  # Plot the median and quantiles.
  if (median || length(quantiles) > 0) {
    time.bin <- time_bins(sir, middle=TRUE)
  }
  if (median) {
    lines(time.bin, median(sir)[[comp]], type="l",
          lwd=lwd.median, col=median_color)
  }
  for (i in seq_along(quantiles)) {
    my.ql <- quantile(sir, comp, quantiles[i])
    lines(time.bin, my.ql, type="l", lty=lty.quantile,
          lwd=lwd.quantile, col=quantile_color[i])
  }

  invisible()
}
kbodwin/longnet documentation built on Nov. 4, 2019, 3:33 p.m.