# The functions for the customer churn workflow are below.
# Lines starting with `#'` are `roxygen2` docstrings,
# which document the purpose, inputs, outputs, and examples
# of our custom functions. The examples are particularly helpful
# to refamiliarize yourself with how the function works.
# For more information on `roxygen2`, visit <https://roxygen2.r-lib.org/>.
#' @title Read and split the data.
#' @description Split customer churn data into training and testing datasets.
#' @export
#' @return An `rsplit` object with training and testing datasets.
#' @param churn_file Character, file path to the customer churn data file.
#' @examples
#' library(rsample)
#' library(tidyverse)
#' split_data("data/churn.csv")
split_data <- function(churn_file) {
read_csv(churn_file, col_types = cols()) %>%
initial_split(prop = 0.7) # from the rsample package
}
#' @title Create a preprocessing recipe.
#' @description Create a `recipe` (<https://recipes.tidymodels.org/>)
#' and run it on the training dataset.
#' @export
#' @return A prepped `recipe` object.
#' @param churn_data An `rsample` object with training and testing datasets.
#' @examples
#' library(recipes)
#' library(rsample)
#' library(tidyverse)
#' churn_data <- split_data("data/churn.csv")
#' prepare_recipe(churn_data)
prepare_recipe <- function(churn_data) {
churn_data %>%
training() %>%
recipe(Churn ~ .) %>%
step_rm(customerID) %>%
step_naomit(all_outcomes(), all_predictors()) %>%
step_discretize(tenure, options = list(cuts = 6)) %>%
step_log(TotalCharges) %>%
step_mutate(Churn = ifelse(Churn == "Yes", 1, 0)) %>%
step_dummy(all_nominal(), -all_outcomes()) %>%
step_center(all_predictors(), -all_outcomes()) %>%
step_scale(all_predictors(), -all_outcomes()) %>%
prep()
}
#' @title Customer churn Keras model definition.
#' @description Define a Keras model for customer churn.
#' @export
#' @return An uncompiled Keras model object.
#' @param churn_recipe A prepped `recipe object` for the churn data.
#' @param units1 Positive integer, number of neurons in the
#' first layer of the deep neural network.
#' @param units2 Positive integer, number of neurons in the
#' second layer of the deep neural network.
#' @param act1 Character, name of the activation function in the first
#' layer of the deep neural network.
#' @param act2 Character, name of the activation function in the second
#' layer of the deep neural network.
#' @param act3 Character, name of the activation function in the third
#' layer of the deep neural network.
#' @examples
#' library(keras)
#' library(recipes)
#' library(rsample)
#' library(tidyverse)
#' churn_data <- split_data("data/churn.csv")
#' churn_recipe <- prepare_recipe(churn_data)
#' define_model(churn_recipe, 16, 16, "sigmoid", "sigmoid", "relu")
define_model <- function(churn_recipe, units1, units2, act1, act2, act3) {
input_shape <- ncol(
juice(churn_recipe, all_predictors(), composition = "matrix")
)
out <- keras_model_sequential() %>%
layer_dense(
units = units1,
kernel_initializer = "uniform",
activation = act1,
input_shape = input_shape
) %>%
layer_dropout(rate = 0.1) %>%
layer_dense(
units = units2,
kernel_initializer = "uniform",
activation = act2
) %>%
layer_dropout(rate = 0.1) %>%
layer_dense(
units = 1,
kernel_initializer = "uniform",
activation = act3
)
out
}
#' @title Train a Keras model for customer churn.
#' @description Predict customer churn on the training dataset.
#' @export
#' @return An trained Keras model object.
#' @inheritParams define_model
#' @examples
#' library(keras)
#' library(recipes)
#' library(rsample)
#' library(tidyverse)
#' churn_data <- split_data("data/churn.csv")
#' churn_recipe <- prepare_recipe(churn_data)
#' train_model(churn_recipe, 16, 16, "sigmoid", "sigmoid", "relu")
train_model <- function(
churn_recipe,
units1 = 16,
units2 = 16,
act1 = "relu",
act2 = "relu",
act3 = "sigmoid"
) {
model <- define_model(churn_recipe, units1, units2, act1, act2, act3)
compile(
model,
optimizer = "adam",
loss = "binary_crossentropy",
metrics = c("accuracy")
)
x_train_tbl <- juice(
churn_recipe,
all_predictors(),
composition = "matrix"
)
y_train_vec <- juice(churn_recipe, all_outcomes()) %>%
pull()
fit(
object = model,
x = x_train_tbl,
y = y_train_vec,
batch_size = 32,
epochs = 32,
validation_split = 0.3,
verbose = 0
)
model
}
#' @title Train a Keras model for customer churn.
#' @description Predict customer churn on the training dataset.
#' @export
#' @return An trained Keras model object.
#' @param churn_data An `rsplit` object of customer churn training
#' and testing data.
#' @param churn_recipe A `recipes` object with the preprocessing steps
#' and preprocessed testing data.
#' @param churn_model A Keras model trained on the customer churn
#' training dataset.
#' @examples
#' library(keras)
#' library(recipes)
#' library(rsample)
#' library(tidyverse)
#' library(yardstick)
#' churn_data <- split_data("data/churn.csv")
#' churn_recipe <- prepare_recipe(churn_data)
#' churn_model <- train_model(churn_recipe, 16, 16, "sigmoid", "relu", "relu")
#' test_accuracy(churn_data, churn_recipe, churn_model)
test_accuracy <- function(churn_data, churn_recipe, churn_model) {
testing_data <- bake(churn_recipe, testing(churn_data))
x_test_tbl <- testing_data %>%
select(-Churn) %>%
as.matrix()
y_test_vec <- testing_data %>%
select(Churn) %>%
pull()
yhat_keras_class_vec <- churn_model %>%
predict_classes(x_test_tbl) %>%
as.factor() %>%
fct_recode(yes = "1", no = "0")
yhat_keras_prob_vec <-
churn_model %>%
predict_proba(x_test_tbl) %>%
as.vector()
test_truth <- y_test_vec %>%
as.factor() %>%
fct_recode(yes = "1", no = "0")
estimates_keras_tbl <- tibble(
truth = test_truth,
estimate = yhat_keras_class_vec,
class_prob = yhat_keras_prob_vec
)
estimates_keras_tbl %>%
conf_mat(truth, estimate) %>%
summary() %>%
filter(.metric == "accuracy") %>%
pull(.estimate)
}
#' @title Train and test the customer churn Keras model.
#' @description Train on the training dataset, then show the accuracy
#' on the testing dataset.
#' @export
#' @return A one-row data frame of the testing accuracy and
#' model hyperparameters.
#' @inheritParams define_model
#' @examples
#' library(keras)
#' library(recipes)
#' library(rsample)
#' library(tidyverse)
#' library(yardstick)
#' churn_data <- split_data("data/churn.csv")
#' churn_recipe <- prepare_recipe(churn_data)
#' test_model(churn_data, churn_recipe, 16, 16, "relu", "relu", "relu")
test_model <- function(
churn_data,
churn_recipe,
units1 = 16,
units2 = 16,
act1 = "relu",
act2 = "relu",
act3 = "sigmoid"
) {
churn_model <- train_model(churn_recipe, units1, units2, act1, act2, act3)
accuracy <- test_accuracy(churn_data, churn_recipe, churn_model)
tibble(
accuracy = accuracy,
units1 = units1,
units2 = units2,
act1 = act1,
act2 = act2,
act3 = act3
)
}
#' @title Retrain a Keras model using the results of a previous run.
#' @description Returns the fitted model object.
#' @export
#' @return A trained Keras model object.
#' @param churn_run A one-row data frame from [test_model()] with the
#' hyperparameters of a previous run.
#' @param churn_recipe
#' @examples
#' library(keras)
#' library(recipes)
#' library(rsample)
#' library(tidyverse)
#' library(yardstick)
#' churn_data <- split_data("data/churn.csv")
#' churn_recipe <- prepare_recipe(churn_data)
#' churn_run <- test_model(churn_data, churn_recipe, 16, 16, "relu")
#' retrain_run(churn_run, churn_recipe)
retrain_run <- function(churn_run, churn_recipe) {
train_model(
churn_recipe,
churn_run$units1,
churn_run$units2,
churn_run$act1,
churn_run$act2,
churn_run$act3
)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.