#' @title terra.climate
#' @description Read in netCDF files and manipulate to fit study area
#' @param root.dir path of root directory where spatial data is located
#' @param cropshape path to shapefile to crop rasters to
#' @param months vector of months to subset rasters to. Must be numeric (e.g. c(4,5,6,7,8))
#' @return Returns a list of raster bricks with all climate data
#' @keywords climate, pdsi, temperature, swe
#' @export
#' @examples
#'
terra.climate<-function(root.dir, cropshape, months){
monthlist<-c('Jan', 'Feb', 'March', 'April', 'May', 'June', 'July', 'August', 'Sept', 'Oct', 'Nov', 'Dec')
new.stack<-list()
files<-list.files(root.dir, pattern = ".nc", full.names = T)
study<-rgdal::readOGR(cropshape)
for(i in 1:length(files)){
name<-unlist(strsplit(files[i], "_")[[1]])
x<-length(name)
yr<-name[x]
name<-name[x-1]
yr<-unlist(strsplit(yr, ".nc")[[1]])[1]
temp<-raster::stack(files[i])
temp<-temp[[months]]
monthnames<-monthlist[months]
names(temp)<-paste0(name, "_", monthnames, "_", yr)
study<-sp::spTransform(study, sp::proj4string(temp))
temp<-raster::crop(temp, study)
new.stack[[i]]<-temp
}
return(new.stack)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.