debug(slcm)
{
library(devtools)
library(dplyr)
load_all()
lca = slcm(L1[2] ~ X1 + X2 + X3)
lcas = slcm(L1[2] ~ X1 + X2 + X3,
L2[2] ~ Y1 + Y2 + Y3)
jlca = slcm(L1[2] ~ X1 + X2 + X3,
L2[3] ~ Y1 + Y2 + Y3,
L3[3] ~ Z1 + Z2 + Z3,
JC[5] ~ L1 + L2 + L3)
lcpa = slcm(L1[2] ~ X1 + X2 + X3,
L2[2] ~ Y1 + Y2 + Y3,
L3[2] ~ Z1 + Z2 + Z3,
PF[2] ~ L1 + L2 + L3,
constraints = list(c("L1", "L2", "L3")))
jlcpa = slcm(L1[3] ~ X11 + X21 + X31,
M1[3] ~ Y11 + Y21 + Y31,
N1[3] ~ Z11 + Z21 + Z31,
L2[3] ~ X12 + X22 + X32,
M2[3] ~ Y12 + Y22 + Y32,
N2[3] ~ Z12 + Z22 + Z32,
L3[3] ~ X13 + X23 + X33,
M3[3] ~ Y13 + Y23 + Y33,
N3[3] ~ Z13 + Z23 + Z33,
J1[3] ~ L1 + M1 + N1,
J2[3] ~ L2 + M2 + N2,
J3[3] ~ L3 + M3 + N3,
JP[3] ~ J1 + J2 + J3,
constraints = list(
c("L1", "L2", "L3"), c("M1", "M2", "M3"), c("N1", "N2", "N3"),
c("J1 ~ L1", "J2 ~ L2", "J3 ~ L3"),
c("J1 ~ M1", "J2 ~ M2", "J3 ~ M3"),
c("J1 ~ N1", "J2 ~ N2", "J3 ~ N3")))
jlcpa1 = slcm(L1[3] ~ X11 + X21 + X31,
M1[3] ~ Y11 + Y21 + Y31,
N1[3] ~ Z11 + Z21 + Z31,
L2[3] ~ X12 + X22 + X32,
M2[3] ~ Y12 + Y22 + Y32,
N2[3] ~ Z12 + Z22 + Z32,
L3[3] ~ X13 + X23 + X33,
M3[3] ~ Y13 + Y23 + Y33,
N3[3] ~ Z13 + Z23 + Z33,
J1[4] ~ L1 + M1 + N1,
J2[4] ~ L2 + M2 + N2,
J3[4] ~ L3 + M3 + N3,
JP[3] ~ J1 + J2 + J3,
constraints = list(
c("L1", "L2", "L3"), c("M1", "M2", "M3"), c("N1", "N2", "N3"),
c("J1 ~ L1", "J2 ~ L2", "J3 ~ L3"),
c("J1 ~ M1", "J2 ~ M2", "J3 ~ M3"),
c("J1 ~ N1", "J2 ~ N2", "J3 ~ N3")))
jjcpa = slcm(L1[3] ~ X11 + X21 + X31,
J2[4] ~ L2 + M2 + N2,
J3[4] ~ L3 + M3 + N3,
M1[3] ~ Y11 + Y21 + Y31,
N1[3] ~ Z11 + Z21 + Z31,
L2[3] ~ X12 + X22 + X32,
M2[3] ~ Y12 + Y22 + Y32,
J1[5] ~ L1 + M1 + N1,
N2[3] ~ Z12 + Z22 + Z32,
L3[3] ~ X13 + X23 + X33,
M3[3] ~ Y13 + Y23 + Y33,
N3[3] ~ Z13 + Z23 + Z33,
JP[4] ~ J1 + J2 + J3)
lta = slcm(L1[3] ~ X11 + X21 + X31,
L2[3] ~ X12 + X22 + X32,
L3[3] ~ X13 + X23 + X33,
L1 ~ L2, L2 ~ L3,
constraints = list(c("L1", "L2", "L3")))
jlta = slcm(L1[3] ~ X11 + X21 + X31,
M1[3] ~ Y11 + Y21 + Y31,
N1[3] ~ Z11 + Z21 + Z31,
L2[3] ~ X12 + X22 + X32,
M2[3] ~ Y12 + Y22 + Y32,
N2[3] ~ Z12 + Z22 + Z32,
L3[3] ~ X13 + X23 + X33,
M3[3] ~ Y13 + Y23 + Y33,
N3[3] ~ Z13 + Z23 + Z33,
J1[3] ~ L1 + M1 + N1,
J2[3] ~ L2 + M2 + N2,
J3[3] ~ L3 + M3 + N3,
J1 ~ J2, J2 ~ J3,
constraints = list(
c("L1", "L2", "L3"), c("M1", "M2", "N3"), c("N1", "N2", "N3"),
c("J1 ~ L1", "J2 ~ L2", "J3 ~ L3"),
c("J1 ~ M1", "J2 ~ M2", "J3 ~ M3"),
c("J1 ~ N1", "J2 ~ N2", "J3 ~ N3")))
mlcpa = slcm(L1[3] ~ X11 + X21 + X31,
M1[3] ~ Y11 + Y21 + Y31,
L2[3] ~ X12 + X22 + X32,
M2[3] ~ Y12 + Y22 + Y32,
L3[3] ~ X13 + X23 + X33,
M3[3] ~ Y13 + Y23 + Y33,
LP[3] ~ L1 + M1 + L2 + M2 + L3 + M3,
constraints = list(
c("L1", "L2", "L3"), c("M1", "M2", "M3"),
c("LP->L1", "LP->L2", "LP->L3"),
c("LP->M1", "LP->M2", "LP->M3")))
lcawg = slcm(LG[2] ~ Z1 + Z2 + Z3,
LC[2] ~ X1 + X2 + X3,
LG ~ LC)
lcpawg = slcm(LG[2] ~ Z1 + Z2 + Z3,
LG ~ P1,
L1[2] ~ X11 + X12 + X13,
L2[2] ~ X21 + X22 + X23,
L3[2] ~ X31 + X32 + X33,
P1[2] ~ L1 + L2 + L3,
constraints = list(c("L1", "L2", "L3")))
}
# lcas; plot(lcas)
# lca; plot(lca)
# lcpa; plot(lcpa)
# jlca; plot(jlca, abbreviation = TRUE)
# jlcpa; plot(jlcpa, abbreviation = TRUE)
# lta; plot(lta)
debug(fit)
library(tidyverse)
object <- jlcpa1
jlcpa1$args
sim <- object %>% simulate(1000, ncat = 2)
fit <- object %>% fit(data = sim$response, method = "em",
control = list(em.iterlim = 5000))
transitionPlot(t(matrix(colSums(exp(fit$joint[[2]])), 3, 3)))
transitionPlot(t(round(fit$estimates$param$tau$B*100)))
str(fit$score)
fit$joint[[1]]
fit %>% parameter_numbers()
undebug(estimate)
fff <- fit %>% fit(data = sim$response, restriction = c("rho1", "rho7"))
fff$estimates$se$param
fff$estimates$param
fit$estimates$param
logLik(fff)
fit$args$npar
fff$args$npar
colSums(fff$estimates$param$rho$a)
newdata <- sim$response[sample(1:1000, 300),]
fit_nlm <- object %>% fit(data = sim$response, method = "nlm", restriction = c("tau3"))
rapply(fit_hb$estimates$param, round, how = "list", digits = 3)
fit_hb <- object %>% fit(data = sim$response, method = "hybrid", restriction = c("tau3"))
fit_hb$estimates$param
fit_hb$estimates$se
library(randomLCA)
library(tidyverse)
data(symptoms)
dat = symptoms[rep(seq(symptoms$Freq), symptoms$Freq),]
lcpa_sym <- slcm(
LC1[3] ~ Nightcough.13 + Wheeze.13 + Itchyrash.13 + FlexDerma.13,
LC2[3] ~ Nightcough.45 + Wheeze.45 + Itchyrash.45 + FlexDerma.45,
LC3[3] ~ Nightcough.6 + Wheeze.6 + Itchyrash.6 + FlexDerma.6,
LC4[3] ~ Nightcough.7 + Wheeze.7 + Itchyrash.7 + FlexDerma.7,
LCP[2] ~ LC1 + LC2 + LC3 + LC4,
constraints = list(c("LC1", "LC2", "LC3", "LC4"))
)
lta_sym <- slcm(
LC1[2] ~ Nightcough.13 + Wheeze.13 + Itchyrash.13 + FlexDerma.13,
LC2[2] ~ Nightcough.45 + Wheeze.45 + Itchyrash.45 + FlexDerma.45,
LC3[2] ~ Nightcough.6 + Wheeze.6 + Itchyrash.6 + FlexDerma.6,
LC4[2] ~ Nightcough.7 + Wheeze.7 + Itchyrash.7 + FlexDerma.7,
LC1 ~ LC2,
LC2 ~ LC3,
LC3 ~ LC4,
constraints = list(c("LC1", "LC2", "LC3", "LC4"))
)
lcpa_sym = lcpa_sym %>% fit(dat)
object <- lcpa_sym
lta_sym = lta_sym %>% fit(data = dat, method = "em")
lta_sym %>% parameter_numbers()
lta_sym %>% estimates()
debug(estimate)
f <- lcpa_sym %>% fit()
f %>% estimates()
f %>% parameter_numbers()
ff <- f %>% fit()
library(glca)
data("gss08")
names(gss08)
ff <- slcm(L1[3] ~ DEFECT + HLTH + RAPE + POOR + SINGLE)
fit <- ff %>% fit(data = gss08)
debug(regress)
fit %>% regress(SEX ~ L1, data = gss08)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.