Description Usage Arguments Examples
View source: R/Robocov_cor_slack.R
A robust estimation of correlation matrix for data with missing entries using box constraint on the difference between the population correlation matrix and pairwise sample correlation matrix, with added L-1 penalty on the slack variables. This is a more flexible version of the Robocov_cor function.
1 2 | Robocov_cor_slack(data_with_missing, alpha = 1, loss = c("lasso",
"ridge", "elasticnet"))
|
data_with_missing |
Samples by features data matrix. May contain missing entries (NA) values. |
alpha |
The tuning parameter for the L-1 shrinkage of the slack variables. |
loss |
Specify if we minimize L-1 ('lasso'), L-2 ('ridge') or elastic-net ('elasticnet') loss functions. |
1 2 3 4 5 6 7 | data("sample_by_feature_data")
out = Robocov_cor_slack(sample_by_feature_data, alpha = 1)
corrplot::corrplot(as.matrix(out), diag = FALSE,
col = colorRampPalette(c("blue", "white", "red"))(200),
tl.pos = "td", tl.cex = 0.4, tl.col = "black",
rect.col = "white",na.label.col = "white",
method = "color", type = "upper")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.