Description Usage Arguments Examples
View source: R/Robocov_precision.R
A robust estimation of partial correlation matrix for data with missing entries using a robust optimization version of the GLASSO method taking account of the missing entries in the data matrix.
1 | Robocov_precision(data_with_missing, alpha, lambda = 1)
|
data_with_missing |
The samples by features data matrix. May contain NA values. |
alpha |
The tuning parameter for L-1 penalty. |
lambda |
The weight of the constraint in the shrinkage. Default lambda taken to be 1. |
1 2 3 4 5 6 7 | data("sample_by_feature_data")
out = Robocov_precision(sample_by_feature_data, alpha = 0.1)
corrplot::corrplot(as.matrix(out), diag = FALSE,
col = colorRampPalette(c("blue", "white", "red"))(200),
tl.pos = "td", tl.cex = 0.4, tl.col = "black",
rect.col = "white",na.label.col = "white",
method = "color", type = "upper")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.