Robocov_cor: Robocov correlation estimation using box constraints on...

Description Usage Arguments Examples

View source: R/Robocov_cor.R

Description

A robust estimation of correlation matrix for data with missing entries using box constraint on the difference between the population correlation matrix and pairwise sample correlation matrix.

Usage

1
Robocov_cor(data_with_missing, loss = c("lasso", "ridge", "elasticnet"))

Arguments

data_with_missing

Samples by features data matrix. May contain missing entries (NA) values.

loss

Specify if we minimize L-1 ('lasso'), L-2 ('ridge') or elastic-net ('elasticnet') loss functions.

Examples

1
2
3
4
5
6
7
data("sample_by_feature_data")
out = Robocov_cor(sample_by_feature_data)
corrplot::corrplot(as.matrix(out), diag = FALSE,
        col = colorRampPalette(c("blue", "white", "red"))(200),
        tl.pos = "td", tl.cex = 0.4, tl.col = "black",
        rect.col = "white",na.label.col = "white",
        method = "color", type = "upper")

kkdey/Robocov documentation built on June 12, 2020, 11:34 a.m.