#' @title Robocov correlation estimation using box constraints on Fisher Z-scores
#' @description A robust estimation of correlation matrix for data with missing entries using box
#' constraint on the difference between the population correlation matrix and pairwise sample correlation
#' matrix.
#'
#' @param data_with_missing Samples by features data matrix. May contain missing entries
#' (NA) values.
#' @param loss Specify if we minimize L-1 (`lasso`), L-2 (`ridge`) or elastic-net (`elasticnet`)
#' loss functions.
#'
#' @examples
#' data("sample_by_feature_data")
#' out = Robocov_cor(sample_by_feature_data)
#' corrplot::corrplot(as.matrix(out), diag = FALSE,
#' col = colorRampPalette(c("blue", "white", "red"))(200),
#' tl.pos = "td", tl.cex = 0.4, tl.col = "black",
#' rect.col = "white",na.label.col = "white",
#' method = "color", type = "upper")
#'
#' @keywords box shrinkage, correlation
#' @import CVXR
#' @importFrom corrplot corrplot
#' @importFrom stats cor sd cov2cor
#' @export
Robocov_cor <- function(data_with_missing,
loss = c("lasso", "ridge", "elasticnet")){
if(length(loss) == 3){
loss = "lasso" ## L1 norm penalty as default to induce sparsity
}
################## Building matrix of common samples for pairwise comparisons ####################
## B: binary matrix B_{N x P} similar to X_{N x P}
## B^{T}B (P x P ) matrix with each entry equal to n_{ij}
## n_{ii} = 0 y construction
binary_indicator = matrix(1, nrow(data_with_missing), ncol(data_with_missing))
binary_indicator[is.na(data_with_missing)]= 0
common_samples = t(binary_indicator)%*%binary_indicator
diag(common_samples) = 0
################# Pairwise correlations computation ###############################
## C = cor(X) pairwisem sample corr matrix:
pairwise_cor = cor(data_with_missing, use = "pairwise.complete.obs")
pairwise_cor[is.na(pairwise_cor)] = 0
pairwise_cor[pairwise_cor > 0.95] = 0.95
pairwise_cor[pairwise_cor < -0.95] = -0.95
diag(pairwise_cor) = 1
common_samples[common_samples <= 2] = 2
################# Computing sample Fisher Z scores ###########################
## Compute Z = 0.5 log ((1+r)/(1-r))
pairwise_zscores = apply(pairwise_cor, c(1,2), function(x) return (0.5*log((1+x)/(1-x))))
diag(pairwise_zscores) = 0
############### Bounds on the correlations ####################################
## Compute the C_{ij} constant upper bound
bound1 = 4*3.3*exp(2*pairwise_zscores)/((exp(2*pairwise_zscores) + 1)^2)
zscores_sd = sqrt(1/(common_samples - 1) + 2/(common_samples - 1)^2)
bound2 = bound1*zscores_sd
bound3 = zscores_sd^2*4.2
overall_bound = bound2 + bound3
constrained_overall_bound = apply(overall_bound, c(1,2), function(x) return(min(2,x)))
diag(constrained_overall_bound) = 0
############### Convex optimization ######################
#library(CVXR)
R <- Semidef(dim(pairwise_cor)[1])
if(loss == "lasso"){
obj <- Minimize(p_norm(R, 1))
}else if (loss == "ridge"){
obj <- Minimize(p_norm(R, 2))
}else if (loss == "elasticnet"){
obj <- Minimize(0.5*p_norm(R, 2) + 0.5*p_norm(R,1))
}else{
stop("loss must be one of lasso, ridge or elasticnet.")
}
constraints = list(diag(R) == 1,
R <= pairwise_cor + constrained_overall_bound,
R >= pairwise_cor - constrained_overall_bound)
prob <- Problem(obj, constraints)
result <- solve(prob)
R_hat = as.matrix(result$getValue(R))
R_hat = cov2cor(R_hat)
if(!is.null(colnames(data_with_missing))){
rownames(R_hat) = colnames(data_with_missing)
colnames(R_hat) = colnames(data_with_missing)
}
return(R_hat)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.