### Predicting the outcome of March Madness tournament by round
path = 'data/Data_2002_23.rda'
load(path)
#declare the season for round 5 matchups between regions
season <- "2023"
#matchup options for Rd. 5: 1 (East v. Midwest), 2 (East v. South), 3 (East v. West)
matchup <- 2
## 2023 option option 2, 2022 option 3, 2019 option 3, 2018 option 1, 2017 option 3, 2016 option 1, 2015 option 2, 2021 option 3
#define the data, full season, no window
y_train <- Data_2022_23$rd_1[which(Data_2022_23[, 2] <= as.character(as.numeric(season) - 1))]
x_train <- Data_2022_23[which(Data_2022_23[, 2] <= as.character(as.numeric(season) - 1)),
c(4, seq(12, 38, by = 2))]
y_test <- Data_2022_23$rd_1[which(Data_2022_23[, 2] == as.character(season))]
x_test <- Data_2022_23[which(Data_2022_23[, 2] == as.character(season)), c(4, seq(12, 38, by = 2))]
x_train <- as.matrix(x_train)
x_test <- as.matrix(x_test)
# define the parameters
n_train <- length(y_train)
n_test <- length(y_test)
p <- dim(x_train)[2]
incr <- 0.05
taus = seq(0.05, 0.95, by = incr)
prob_matrix <- matrix(0, length(taus), n_test)
# discretize y_train to be applicable to the cqs function
set.seed(1234)
y_train_dis <- y_train + .00001 * mean(y_train) * rnorm(n_train)
# apply the cqs function and perform dimension reduction
for (j in 1:length(taus)){
out <- quantdr::cqs(x_train, y_train_dis, taus[j])
dtau_hat <- out$dtau
beta_hat <- cbind(out$qvectors[, 1:dtau_hat])
# define the new sufficient predictors
new_data_train <- x_train %*% beta_hat
new_data_test <- x_test %*% beta_hat
# estimate the nonparametric quantile function
ghat <- as.null(length(y_test))
#h <- 1.25 * max(length(y_train_dis)^(-1 / (dtau_hat + 4)), min(2, sd(y_train_dis)) * length(y_train_dis)^(- 1 / (dtau_hat + 4)))
h <- 2 * sd(y_train_dis) * length(y_train_dis)^(- 1 / (dtau_hat + 4))
for (i in 1:length(y_test)){
ghat[i] <- quantdr::llqr(new_data_train, y_train_dis, tau = taus[j], h = h, x0 = new_data_test[i, ])$ll_est
if (ghat[i] < 0) ghat[i] = 0
if (ghat[i] > 1) ghat[i] = 1
}
prob_matrix[j, ] <- ghat
}
# find average across quantiles
avg_prob <- apply(prob_matrix, 2, sum) * incr
# arrange data by game matchup
#not sure we need this colnames(Data_2022_23)[1] <- "team" #rename the first column
Rd1 <- subset(Data_2022_23, year == season, c("region", "team", "seed"))
Rd1 <- dplyr::arrange(Rd1, region, seed) #make sure that teams really are arranged by seed
game.order <- rep(c(1:8, 8:1), 4)
Rd1$game = game.order
Rd1$prob = avg_prob
Rd1 <- Rd1[, c("region", "game", "seed", "team", "prob")]
Rd1 <- dplyr::arrange(Rd1, region, game, -prob, seed)
win <- rep(c(1:0), 32)
Rd1$win <- rep(c(1:0), 32)
Rd1$win <- win
# pull out winners only
Rd1_winners <- subset(Rd1, Rd1$win == 1)
Rd1_winners
### Round 2
# define the data
y_train <- Data_2022_23$rd_2[which(Data_2022_23[, 6] == 1 & Data_2022_23[, 2] <= as.character(as.numeric(season) - 1))]
x_train <- Data_2022_23[which(Data_2022_23[, 6] == 1 & Data_2022_23[, 2] <= as.character(as.numeric(season) - 1)), c(4, seq(12, 38, by = 2))]
y_test <- Data_2022_23$rd_2[which(Data_2022_23[, 2] == as.character(season) & Data_2022_23[, 1] %in% Rd1_winners$team)]
x_test <- Data_2022_23[which(Data_2022_23[, 2] == as.character(season) & Data_2022_23[, 1] %in% Rd1_winners$team), c(4, seq(12, 38, by = 2))]
x_train <- as.matrix(x_train)
x_test <- as.matrix(x_test)
# define the parameters
n_train <- length(y_train)
n_test <- length(y_test)
p <- dim(x_train)[2]
prob_matrix <- matrix(0, length(taus), n_test)
# discretize y_train to be applicable to the cqs function
set.seed(1234)
y_train_dis <- y_train + .00001 * mean(y_train) * rnorm(n_train)
# apply the cqs function and perform dimension reduction
for (j in 1:length(taus)){
out <- quantdr::cqs(x_train, y_train_dis, taus[j])
dtau_hat <- out$dtau
beta_hat <- cbind(out$qvectors[, 1:dtau_hat])
# define the new sufficient predictors
new_data_train <- x_train %*% beta_hat
new_data_test <- x_test %*% beta_hat
# estimate the nonparametric quantile function
ghat <- as.null(length(y_test))
#h <- 1.25 * max(length(y_train_dis)^(-1 / (dtau_hat + 4)), min(2, sd(y_train_dis)) * length(y_train_dis)^(- 1 / (dtau_hat + 4)))
h <- 2 * sd(y_train_dis) * length(y_train_dis)^(- 1 / (dtau_hat + 4))
for (i in 1:length(y_test)){
ghat[i] <- quantdr::llqr(new_data_train, y_train_dis, tau = taus[j], h = h, x0 = new_data_test[i, ])$ll_est
if (ghat[i] < 0) ghat[i] = 0
if (ghat[i] > 1) ghat[i] = 1
}
prob_matrix[j, ] <- ghat
}
# find average across quantiles
avg_prob2 <- apply(prob_matrix, 2, sum) * incr
# arrange games by matchup
Rd2 <- Rd1_winners[, c(1, 3:4)]
game.order <- rep(c(1:4, 4:1), 4)
Rd2$game = game.order
Rd2$prob = avg_prob2
Rd2 <- Rd2[, c("region", "game", "seed", "team", "prob")]
Rd2 <- dplyr::arrange(Rd2, region, game, -prob, seed)
win2 <- rep(c(1:0), 16)
Rd2$win <- rep(c(1:0), 16)
#Rd2 win predictions
Rd2_winners <- subset(Rd2, Rd2$win == 1)
Rd2_winners
### Round 3
# define the data
y_train <- Data_2022_23$rd_3[which(Data_2022_23[, 7] == 1 & Data_2022_23[, 2] <= as.character(as.numeric(season) - 1))]
x_train <- Data_2022_23[which(Data_2022_23[, 7] == 1 & Data_2022_23[, 2] <= as.character(as.numeric(season) - 1)), c(4, seq(12, 38, by = 2))]
y_test <- Data_2022_23$rd_3[which(Data_2022_23[, 2] == as.character(season) & Data_2022_23[, 1] %in% Rd2_winners$team)]
x_test <- Data_2022_23[which(Data_2022_23[, 2] == as.character(season) & Data_2022_23[, 1] %in% Rd2_winners$team),
c(4, seq(12, 38, by = 2))]
x_train <- as.matrix(x_train)
x_test <- as.matrix(x_test)
# define the parameters
n_train <- length(y_train)
n_test <- length(y_test)
p <- dim(x_train)[2]
prob_matrix <- matrix(0, length(taus), n_test)
# discretize y_train to be applicable to the cqs function
set.seed(1234)
y_train_dis <- y_train + .00001 * mean(y_train) * rnorm(n_train)
# apply the cqs function and perform dimension reduction
for (j in 1:length(taus)){
out <- quantdr::cqs(x_train, y_train_dis, taus[j])
dtau_hat <- out$dtau
beta_hat <- cbind(out$qvectors[, 1:dtau_hat])
# define the new sufficient predictors
new_data_train <- x_train %*% beta_hat
new_data_test <- x_test %*% beta_hat
# estimate the nonparametric quantile function
ghat <- as.null(length(y_test))
#h <- 1.25 * max(length(y_train_dis)^(-1 / (dtau_hat + 4)), min(2, sd(y_train_dis)) * length(y_train_dis)^(- 1 / (dtau_hat + 4)))
h <- 2 * sd(y_train_dis) * length(y_train_dis)^(- 1 / (dtau_hat + 4))
for (i in 1:length(y_test)){
ghat[i] <- quantdr::llqr(new_data_train, y_train_dis, tau = taus[j], h = h, x0 = new_data_test[i, ])$ll_est
if (ghat[i] < 0) ghat[i] = 0
if (ghat[i] > 1) ghat[i] = 1
}
prob_matrix[j, ] <- ghat
}
# find average across quantiles
avg_prob3 <- apply(prob_matrix, 2, sum) * incr
# arrange games by matchup
Rd3 <- Rd2_winners[, c(1, 3:4)]
game.order <- rep(c(1:2, 2:1), 4)
Rd3$game <- game.order
Rd3$prob <- avg_prob3
Rd3 <- Rd3[, c("region", "game", "seed", "team", "prob")]
Rd3 <- dplyr::arrange(Rd3, region, game, -prob, seed)
win3 <- rep(c(1:0), 8)
Rd3$win <- rep(c(1:0), 8)
# Rd3 win predictions
Rd3_winners <- subset(Rd3, Rd3$win == 1)
Rd3_winners
### Round 4
# define the data
y_train <- Data_2022_23$rd_4[which(Data_2022_23[, 8] == 1 & Data_2022_23[, 2] <= as.character(as.numeric(season) - 1))]
x_train <- Data_2022_23[which(Data_2022_23[, 8] ==1 & Data_2022_23[, 2] <= as.character(as.numeric(season) - 1)), c(4, seq(12, 38, by = 2))]
y_test <- Data_2022_23$rd_4[which(Data_2022_23[, 2] == as.character(season) & Data_2022_23[, 1] %in% Rd3_winners$team)]
x_test <- Data_2022_23[which(Data_2022_23[, 2] == as.character(season) & Data_2022_23[, 1] %in% Rd3_winners$team),
c(4, seq(12, 38, by = 2))]
x_train <- as.matrix(x_train)
x_test <- as.matrix(x_test)
# define the parameters
n_train <- length(y_train)
n_test <- length(y_test)
p <- dim(x_train)[2]
prob_matrix <- matrix(0, length(taus), n_test)
# discretize y_train to be applicable to the cqs function
set.seed(1234)
y_train_dis <- y_train + .00001 * mean(y_train) * rnorm(n_train)
# apply the cqs function and perform dimension reduction
for (j in 1:length(taus)){
out <- quantdr::cqs(x_train, y_train_dis, taus[j])
dtau_hat <- out$dtau
beta_hat <- cbind(out$qvectors[, 1:dtau_hat])
# define the new sufficient predictors
new_data_train <- x_train %*% beta_hat
new_data_test <- x_test %*% beta_hat
# estimate the nonparametric quantile function
ghat <- as.null(length(y_test))
#h <- 1.25 * max(length(y_train_dis)^(-1 / (dtau_hat + 4)), min(2, sd(y_train_dis)) * length(y_train_dis)^(- 1 / (dtau_hat + 4)))
h <- 2 * sd(y_train_dis) * length(y_train_dis)^(- 1 / (dtau_hat + 4))
for (i in 1:length(y_test)){
ghat[i] <- quantdr::llqr(new_data_train, y_train_dis, tau = taus[j], h = h, x0 = new_data_test[i, ])$ll_est
if (ghat[i] < 0) ghat[i] = 0
if (ghat[i] > 1) ghat[i] = 1
}
prob_matrix[j, ] <- ghat
}
# find average across quantiles
avg_prob4 <- apply(prob_matrix, 2, sum) * incr
# arrange games by matchup
Rd4 <- Rd3_winners[, c(1, 3:4)]
game.order <- rep(c(1:4), each = 2)
Rd4$game <- game.order
Rd4$prob <- avg_prob4
Rd4 <- Rd4[, c("region", "game", "seed", "team", "prob")]
Rd4 <- dplyr::arrange(Rd4, region, game, -prob, seed)
Rd4$win <- rep(c(1:0), 4)
Rd4_winners <- subset(Rd4, Rd4$win == 1)
Rd4_winners
### Round 5
# define the data
y_train <- Data_2022_23$rd_5[which(Data_2022_23[, 9] == 1 & Data_2022_23[, 2] <= as.character(as.numeric(season) - 1))]
x_train <- Data_2022_23[which(Data_2022_23[, 9] == 1 & Data_2022_23[, 2] <= as.character(as.numeric(season) - 1)), c(4, seq(12, 38, by = 2))]
y_test <- Data_2022_23$rd_5[which(Data_2022_23[, 2] == as.character(season) & Data_2022_23[, 1] %in% Rd4_winners$team)]
x_test <- Data_2022_23[which(Data_2022_23[, 2] == as.character(season) & Data_2022_23[, 1] %in% Rd4_winners$team),
c(4, seq(12, 38, by = 2))]
x_train <- as.matrix(x_train)
x_test <- as.matrix(x_test)
# define the parameters
n_train <- length(y_train)
n_test <- length(y_test)
p <- dim(x_train)[2]
prob_matrix <- matrix(0, length(taus), n_test)
# discretize y_train to be applicable to the cqs function
set.seed(1234)
y_train_dis <- y_train + .00001 * mean(y_train) * rnorm(n_train)
# apply the cqs function and perform dimension reduction
for (j in 1:length(taus)){
out <- quantdr::cqs(x_train, y_train_dis, taus[j])
dtau_hat <- out$dtau
beta_hat <- cbind(out$qvectors[, 1:dtau_hat])
# define the new sufficient predictors
new_data_train <- x_train %*% beta_hat
new_data_test <- x_test %*% beta_hat
# estimate the nonparametric quantile function
ghat <- as.null(length(y_test))
#h <- 1.25 * max(length(y_train_dis)^(-1 / (dtau_hat + 4)), min(2, sd(y_train_dis)) * length(y_train_dis)^(- 1 / (dtau_hat + 4)))
h <- 2 * sd(y_train_dis) * length(y_train_dis)^(- 1 / (dtau_hat + 4))
for (i in 1:length(y_test)){
ghat[i] <- quantdr::llqr(new_data_train, y_train_dis, tau = taus[j], h = h, x0 = new_data_test[i, ])$ll_est
if (ghat[i] < 0) ghat[i] = 0
if (ghat[i] > 1) ghat[i] = 1
}
prob_matrix[j, ] <- ghat
}
# find average across quantiles
avg_prob5 <- apply(prob_matrix, 2, sum) * incr
# arrange games by matchup
Rd5 <- Rd4_winners[, c(1, 3:4)]
game.order <- if(matchup == 1){c(1, 1, 2, 2)
} else {
if(matchup == 2){rep(c(1:2), 2)
} else {rep(c(1:2, 2:1))}
}
Rd5$game <- game.order
Rd5$prob <- avg_prob5
Rd5 <- Rd5[, c("region", "game", "seed", "team", "prob")]
Rd5 <- dplyr::arrange(Rd5, game, -prob, seed)
Rd5$win <- rep(c(1:0), 2)
Rd5_winners <- subset(Rd5, Rd5$win == 1)
Rd5_winners
### Round 6
# define the data
y_train <- Data_2022_23$rd_6[which(Data_2022_23[, 10] == 1 & Data_2022_23[, 2] <= as.character(as.numeric(season) - 1))]
x_train <- Data_2022_23[which(Data_2022_23[, 10] == 1 & Data_2022_23[, 2] <= as.character(as.numeric(season) - 1)), c(4, seq(12, 38, by = 2))]
y_test <- Data_2022_23$rd_6[which(Data_2022_23[, 2] == as.character(season) & Data_2022_23[, 1] %in% Rd5_winners$team)]
x_test <- Data_2022_23[which(Data_2022_23[, 2] == as.character(season) & Data_2022_23[, 1] %in% Rd5_winners$team),
c(4, seq(12, 38, by = 2))]
x_train <- as.matrix(x_train)
x_test <- as.matrix(x_test)
# define the parameters
n_train <- length(y_train)
n_test <- length(y_test)
p <- dim(x_train)[2]
prob_matrix <- matrix(0, length(taus), n_test)
# discretize y_train to be applicable to the cqs function
set.seed(1234)
y_train_dis <- y_train + .00001 * mean(y_train) * rnorm(n_train)
# apply the cqs function and perform dimension reduction
for (j in 1:length(taus)){
out <- quantdr::cqs(x_train, y_train_dis, taus[j])
dtau_hat <- out$dtau
beta_hat <- cbind(out$qvectors[, 1:dtau_hat])
# define the new sufficient predictors
new_data_train <- x_train %*% beta_hat
new_data_test <- x_test %*% beta_hat
# estimate the nonparametric quantile function
ghat <- as.null(length(y_test))
#h <- 1.25 * max(length(y_train_dis)^(-1 / (dtau_hat + 4)), min(2, sd(y_train_dis)) * length(y_train_dis)^(- 1 / (dtau_hat + 4)))
h <- 2 * sd(y_train_dis) * length(y_train_dis)^(- 1 / (dtau_hat + 4))
for (i in 1:length(y_test)){
ghat[i] <- quantdr::llqr(new_data_train, y_train_dis, tau = taus[j], h = h, x0 = new_data_test[i, ])$ll_est
if (ghat[i] < 0) ghat[i] = 0
if (ghat[i] > 1) ghat[i] = 1
}
prob_matrix[j, ] <- ghat
}
# find average across quantiles
avg_prob6 <- apply(prob_matrix, 2, sum) * incr
# arrange games by matchup
Rd6 <- Rd5_winners[, c(1, 3:4)]
Rd6$prob <- avg_prob6
Rd6 <- Rd6[, c("region", "seed", "team", "prob")]
Rd6 <- dplyr::arrange(Rd6, -prob)
Rd6$win <- rep(c(1:0))
Rd6_winner <- subset(Rd6, Rd6$win == 1)
Rd6_winner
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.