OmicSelector_xgboost: OmicSelector_xgboost

View source: R/OmicSelector_xgboost.R

OmicSelector_xgboostR Documentation

OmicSelector_xgboost

Description

Train xgboost model with Bayesian optimalization. Code based on http://www.mysmu.edu/faculty/jwwang/post/hyperparameters-tuning-for-xgboost-using-bayesian-optimization/

Usage

OmicSelector_xgboost(
  features = "all",
  train = OmicSelector_load_datamix(use_smote_not_rose = T)[[1]],
  test = OmicSelector_load_datamix(use_smote_not_rose = T)[[2]],
  valid = OmicSelector_load_datamix(use_smote_not_rose = T)[[2]],
  eta = c(0, 1),
  gamma = c(0, 100),
  max_depth = c(2L, 10L),
  min_child_weight = c(1, 25),
  subsample = c(0.25, 1),
  nfold = c(3L, 10L),
  initPoints = 8,
  iters.n = 10
)

Arguments

features

Vector of features to be used. If "all", all features starting with 'hsa' will be used.

train

Training dataset with column Class ('Case' vs. 'Control') and features starting with 'hsa'.

test

Testing dataset with column Class ('Case' vs. 'Control') and features starting with 'hsa'.

valid

Testing dataset with column Class ('Case' vs. 'Control') and features starting with 'hsa'.

eta

Bonderies of 'eta' parameter in XGBoost training, must be a vector of 2.

gamma

Bonderies of 'gamma' parameter in XGBoost training, must be a vector of 2.

max_depth

Bonderies of 'max_depth' parameter in XGBoost training, must be a vector of 2.

min_child_weight

Bonderies of 'min_child_weight' parameter in XGBoost training, must be a vector of 2.

subsample

Bonderies of 'subsample' parameter in XGBoost training, must be a vector of 2.

nfold

Bonderies of 'nfold' parameter in XGBoost training, must be a vector of 2.

Value

Xgboost model


kstawiski/OmicSelector documentation built on April 10, 2024, 11:11 p.m.