plot.vGWAS | R Documentation |
The function plots the variance GWA result for the given scan object.
## S3 method for class 'vGWAS'
plot(x, sig.threshold = NULL, low.log.p = 0,
pch = 16, cex = 0.6, col.manhattan = c("slateblue4", "olivedrab"),
col.sig.threshold = "darkgoldenrod", ...)
x |
a result object from |
sig.threshold |
a numeric value giving the significance
threshold for |
low.log.p |
a numeric value giving the lower limit of the
|
pch |
point character. See |
cex |
size of points. See |
col.manhattan |
two colors as a vector for the Manhattan plot. |
col.sig.threshold |
one color for the significance threshold |
... |
not in use |
a plot for viewing vGWAS result.
Xia Shen
Shen, X., Pettersson, M., Ronnegard, L. and Carlborg, O.
(2011): Inheritance beyond plain heritability:
variance-controlling genes in Arabidopsis thaliana.
PLoS Genetics, 8, e1002839.
package-vGWAS
, vGWAS
# ----- load data ----- #
data(pheno)
data(geno)
data(chr)
data(map)
# ----- variance GWA scan ----- #
vgwa <- vGWAS(phenotype = pheno, geno.matrix = geno,
marker.map = map, chr.index = chr, pB = FALSE)
# ----- visualize the scan ----- #
plot(vgwa)
summary(vgwa)
# ----- calculate the variance explained by the strongest marker ----- #
vGWAS.variance(phenotype = pheno,
marker.genotype = geno[, vgwa[["p.value"]] == min(vgwa[["p.value"]])])
# ----- genomic control ----- #
vgwa2 <- vGWAS.gc(vgwa)
plot(vgwa2)
summary(vgwa2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.