View source: R/vGWAS.variance.R
vGWAS.variance | R Documentation |
The function calculates and reports the variance explained for a single marker by fitting a double generalized linear model. It gives both the variance explained by the mean and variance parts of model.
vGWAS.variance(phenotype, marker.genotype, print = TRUE)
phenotype |
a |
marker.genotype |
a |
print |
a |
The Value will only be available if
only.print = FALSE
.
variance.mean |
the variance explained by the mean part of model. |
variance.disp |
the variance explained by the variance part of model. |
Xia Shen
Shen, X., Pettersson, M., Ronnegard, L. and Carlborg, O.
(2011): Inheritance beyond plain heritability:
variance-controlling genes in Arabidopsis thaliana.
PLoS Genetics, 8, e1002839.
package-vGWAS
,
vGWAS
, plot.vGWAS
# ----- load data ----- #
data(pheno)
data(geno)
data(chr)
data(map)
# ----- variance GWA scan ----- #
vgwa <- vGWAS(phenotype = pheno, geno.matrix = geno,
marker.map = map, chr.index = chr, pB = FALSE)
# ----- visualize the scan ----- #
plot(vgwa)
summary(vgwa)
# ----- calculate the variance explained by the strongest marker ----- #
vGWAS.variance(phenotype = pheno,
marker.genotype = geno[, vgwa[["p.value"]] == min(vgwa[["p.value"]])])
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.