vGWAS | R Documentation |
Variance Genome-wide association for using nonparametric variance test
vGWAS(phenotype, geno.matrix, kruskal.test = FALSE,
marker.map = NULL, chr.index = NULL, pB = TRUE)
phenotype |
a |
geno.matrix |
a |
kruskal.test |
a |
marker.map |
a |
chr.index |
a |
pB |
show progress bar |
a data.frame
containing columns of marker
names,
chromosome
indices, marker.map
positions,
test statistic
values, and p.value
for each position.
Xia Shen
Shen, X., Pettersson, M., Ronnegard, L. and Carlborg, O.
(2011): Inheritance beyond plain heritability:
variance-controlling genes in Arabidopsis thaliana.
PLoS Genetics, 8, e1002839.
Ronnegard, L., Shen, X. and Alam, M. (2010):
hglm: A Package for Fitting Hierarchical Generalized
Linear Models. The R Journal, 2(2), 20-28.
package-vGWAS
# ----- load data ----- #
data(pheno)
data(geno)
data(chr)
data(map)
# ----- variance GWA scan ----- #
vgwa <- vGWAS(phenotype = pheno, geno.matrix = geno,
marker.map = map, chr.index = chr, pB = FALSE)
# ----- visualize the scan ----- #
plot(vgwa)
summary(vgwa)
# ----- calculate the variance explained by the strongest marker ----- #
vGWAS.variance(phenotype = pheno,
marker.genotype = geno[, vgwa[["p.value"]] == min(vgwa[["p.value"]])])
# ----- genomic control ----- #
vgwa2 <- vGWAS.gc(vgwa)
plot(vgwa2)
summary(vgwa2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.