View source: R/vGWASparallel.R
vGWASparallel | R Documentation |
Variance Genome-wide association for using nonparametric variance test and other
vGWASparallel(phenotype, geno.matrix, marker.map = NULL,
chr.index = NULL, geno.snp = "row", method = "bfmedian", test.alpha = 0.05,
test.na.rm = TRUE, p.adjust.method = "none", include.het = FALSE, pB = TRUE,
ncores = 1)
phenotype |
a |
geno.matrix |
a |
marker.map |
a |
chr.index |
a |
geno.snp |
if individuals at columns and markers at rows use "row" else if individuals at rows and markers at columns use "col" |
method |
the test method to use (default = bfmedian). Default is set to the Brown-Forsythe's Test of Equality of Variances using group medians. There are 31 other tests available via the onewaytests package: Alvandi's F test ("af"), Alexander-Govern test ("ag"), Alvandi's generalized p-value ("agp"), One-way analysis of variance ("aov"), Approximate F test ("ap"), Adjusted Welch's heteroscedastic F test ("aw"), B square test ("b2"), Brown-Forsythe test ("bf"), Box F test ("box"), Cochran test ("cochran"), Generalized tests equivalent to Parametric Bootstrap ("gtb"), Generalized tests equivalent to Fiducial tests ("gtf"), Variance homogeneity tests ("homog"), James second order test ("james"), Johansen F test ("johansen"), Kruskal-Wallis test ("kw"), Modified Brown-Forsythe test ("mbf"), Mann-Whitney U test ("mw"), Anderson-Darling normility test ("nor_ad"), Cramer-vin Mises normility test ("nor_cvm"), Kolmogorov-Smirnov normility test ("nor_ks"), Pearson Chi-square normility test ("nor_pct"), Shapiro-Wilk normility test ("nor_sw"), Shapiro-Francia normility test ("nor_sf"), Permutation F test ("pf"), Scott-Smith test ("ss"), Student's t-test ("st"), Welch-Aspin test ("wa"), Welch's heteroscedastic F test with trimmed means and Winsorized variances ("welch"), Weerahandi's generalized F test ("wgf"), Welch's t-test ("wt"). |
test.alpha |
the level of significance to assess the statistical difference. Default is set to alpha = 0.05. |
test.na.rm |
a logical value indicating whether NA values should be stripped before the computation proceeds. Default us set to TRUE. |
p.adjust.method |
correction method (default = "none"). There are 8 p-value correction methods available via the p.adjust function: "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none" |
include.het |
specify if heterozygous calls should be split and added equally to homozygous ref and alt counts (default = FALSE) |
pB |
show progress bar |
ncores |
number of cores to parallelize (default = 1) |
a data.frame
containing columns of marker
names,
chromosome
indices, marker.map
positions,
test statistic
values, and p.value
for each position.
Xia Shen
Kristian Ullrich
Shen, X., Pettersson, M., Ronnegard, L. and Carlborg, O.
(2011): Inheritance beyond plain heritability:
variance-controlling genes in Arabidopsis thaliana.
PLoS Genetics, 8, e1002839.
Ronnegard, L., Shen, X. and Alam, M. (2010):
hglm: A Package for Fitting Hierarchical Generalized
Linear Models. The R Journal, 2(2), 20-28.
package-vGWAS
onewaytests
# ----- load data ----- #
data(pheno)
data(geno)
data(chr)
data(map)
# ----- variance GWA scan ----- #
vgwa <- vGWASparallel(phenotype = pheno, geno.matrix = geno,
marker.map = map, chr.index = chr,
geno.snp = "col", pB = FALSE)
# ----- other test GWA scan ----- #
vgwa.mw <- vGWASparallel(phenotype = pheno, geno.matrix = geno,
marker.map = map, chr.index = chr,
geno.snp = "col", method = "mw", pB = FALSE)
# ----- multiple cores ----- #
vgwa.st <- vGWASparallel(phenotype = pheno, geno.matrix = geno,
marker.map = map, chr.index = chr,
geno.snp = "col", method = "st", ncores = 2, pB = FALSE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.