varimp_parallel <-
function (object, mincriterion = 0, conditional = FALSE, threshold = 0.2,
nperm = 1, OOB = TRUE, pre1.0_0 = conditional)
{
response <- object@responses
if (length(response@variables) == 1 && inherits(response@variables[[1]],
"Surv"))
return(varimpsurv(object, mincriterion, conditional,
threshold, nperm, OOB, pre1.0_0))
input <- object@data@get("input")
xnames <- colnames(input)
inp <- initVariableFrame(input, trafo = NULL)
y <- object@responses@variables[[1]]
if (length(response@variables) != 1)
stop("cannot compute variable importance measure for multivariate response")
if (conditional || pre1.0_0) {
if (!all(complete.cases(inp@variables)))
stop("cannot compute variable importance measure with missing values")
}
CLASS <- all(response@is_nominal)
ORDERED <- all(response@is_ordinal)
if (CLASS) {
error <- function(x, oob) mean((levels(y)[sapply(x, which.max)] !=
y)[oob])
}
else {
if (ORDERED) {
error <- function(x, oob) mean((sapply(x, which.max) !=
y)[oob])
}
else {
error <- function(x, oob) mean((unlist(x) - y)[oob]^2)
}
}
w <- object@initweights
if (max(abs(w - 1)) > sqrt(.Machine$double.eps))
warning(sQuote("varimp"), " with non-unity weights might give misleading results")
perror <- matrix(0, nrow = nperm * length(object@ensemble),
ncol = length(xnames))
colnames(perror) <- xnames
l1<-lapply(1:length(object@ensemble),function(b){
# for (b in 1:length(object@ensemble)) {
tree <- object@ensemble[[b]]
if (OOB) {
oob <- object@weights[[b]] == 0
}
else {
oob <- rep(TRUE, length(y))
}
p <- predict(tree, inp, mincriterion, -1L)
eoob <- error(p, oob)
#for (j in unique(varIDs(tree))) {
l2<-lapply(unique(varIDs(tree)),function(j){
for (per in 1:nperm) {
if (conditional || pre1.0_0) {
tmp <- inp
ccl <- create_cond_list(conditional, threshold,
xnames[j], input)
if (length(ccl) < 1) {
perm <- sample(which(oob))
}
else {
perm <- conditional_perm(ccl, xnames, input,
tree, oob)
}
tmp@variables[[j]][which(oob)] <- tmp@variables[[j]][perm]
p <- predict(tree, tmp, mincriterion, -1L)
}
else {
p <- predict(tree, inp, mincriterion, as.integer(j))
}
#perror[(per + (b - 1) * nperm), j] <- (error(p,oob) - eoob)
perror[(per), j] <- (error(p,oob) - eoob)
}
return(perror)
})
perror<-ldply(l2,rbind)
return(perror)
})
perror<-ldply(l1,rbind)
perror <- as.data.frame(perror)
return(MeanDecreaseAccuracy = colMeans(perror))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.