#' Ensemble of Gaussian Mixtures with Random Projection
#'
#' When the data lies in a high-dimensional Euclidean space, fitting a model-based
#' clustering algorithm is troublesome. This function implements an algorithm
#' from the reference, which uses an aggregate information from an ensemble of
#' Gaussian mixtures in combination with random projection.
#'
#' @param data an \eqn{(n\times p)} matrix of row-stacked observations.
#' @param k the number of clusters (default: 2).
#' @param ... extra parameters including \describe{
#' \item{nruns}{the number of projections (default: 20).}
#' \item{lowdim}{target dimension for random projection (default: 5).}
#' \item{maxiter}{the maximum number of iterations (default: 10).}
#' \item{usediag}{a logical; covariances are diagonal if \code{TRUE}, or full covariances are returned for \code{FALSE} (default: \code{FALSE}).}
#' }
#'
#' @return a named list of S3 class \code{T4cluster} containing
#' \describe{
#' \item{cluster}{a length-\eqn{n} vector of class labels (from \eqn{1:k}).}
#' \item{algorithm}{name of the algorithm.}
#' }
#'
#' @references
#' \insertRef{10.5555/3041838.3041862}{T4cluster}
#'
#' @examples
#' \donttest{
#' # -------------------------------------------------------------
#' # clustering with 'iris' dataset
#' # -------------------------------------------------------------
#' ## PREPARE
#' data(iris)
#' X = as.matrix(iris[,1:4])
#' lab = as.integer(as.factor(iris[,5]))
#'
#' ## EMBEDDING WITH PCA
#' X2d = Rdimtools::do.pca(X, ndim=2)$Y
#'
#' ## CLUSTERING WITH DIFFERENT K VALUES
#' cl2 = gmm03F(X, k=2)$cluster
#' cl3 = gmm03F(X, k=3)$cluster
#' cl4 = gmm03F(X, k=4)$cluster
#'
#' ## VISUALIZATION
#' opar <- par(no.readonly=TRUE)
#' par(mfrow=c(2,2), pty="s")
#' plot(X2d, col=lab, pch=19, main="true label")
#' plot(X2d, col=cl2, pch=19, main="gmm03F: k=2")
#' plot(X2d, col=cl3, pch=19, main="gmm03F: k=3")
#' plot(X2d, col=cl4, pch=19, main="gmm03F: k=4")
#' par(opar)
#' }
#'
#' @concept algorithm
#' @export
gmm03F <- function(data, k=2, ...){
## PREPARE : EXPLICIT INPUT
mydata = prec_input_matrix(data)
myk = max(1, round(k))
myn = base::nrow(data)
myp = base::ncol(data)
if (myp < 2){
stop("* gmm03F : for univariate data, use other functions.")
}
## PREPARE : IMPLICIT
params = list(...)
pnames = names(params)
myiter = round(max(5, ifelse(("maxiter"%in%pnames), params$maxiter, 10)))
mydiag = as.logical(ifelse(("usediag"%in%pnames), params$usediag, FALSE))
if ("lowdim"%in%pnames){
mylowdim = max(2,round(params$lowdim))
} else {
mylowdim = 5
}
if (mylowdim > myp){
mylowdim = 2
}
if ("nruns"%in%pnames){
mynruns = max(5, round(params$nruns))
} else {
mynruns = 20
}
## MAIN COMPUTATION FOR SIMILARITY
mat.sim = gmm_03F(mydata, myk, myiter, mydiag, mylowdim, mynruns)
mat.P = 1-mat.sim; diag(mat.P) = 0; mat.P[(mat.P<0)] = 0
## HCLUST+COMPLETE LINKAGE
fimport = utils::getFromNamespace("hidden_hclust", "maotai")
hcout = fimport(stats::as.dist(mat.P), "complete", NULL)
## WRAP AND RETURN
output = list()
output$cluster = as.vector(stats::cutree(hcout, k=myk))
output$algorithm = "gmm03F"
return(structure(output, class="T4cluster"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.