#' K-Means Clustering with Lightweight Coreset
#'
#' Apply \eqn{k}-means clustering algorithm on top of the lightweight coreset
#' as proposed in the paper.
#' The smaller the set is, the faster the execution becomes with potentially larger quantization errors.
#'
#' @param data an \eqn{(n\times p)} matrix of row-stacked observations.
#' @param k the number of clusters (default: 2).
#' @param m the size of coreset (default: \eqn{n/2}).
#' @param ... extra parameters including \describe{
#' \item{maxiter}{the maximum number of iterations (default: 10).}
#' \item{nstart}{the number of random initializations (default: 5).}
#' }
#'
#' @return a named list of S3 class \code{T4cluster} containing
#' \describe{
#' \item{cluster}{a length-\eqn{n} vector of class labels (from \eqn{1:k}).}
#' \item{mean}{a \eqn{(k\times p)} matrix where each row is a class mean.}
#' \item{wcss}{within-cluster sum of squares (WCSS).}
#' \item{algorithm}{name of the algorithm.}
#' }
#'
#' @examples
#' # -------------------------------------------------------------
#' # clustering with 'iris' dataset
#' # -------------------------------------------------------------
#' ## PREPARE
#' data(iris)
#' X = as.matrix(iris[,1:4])
#' lab = as.integer(as.factor(iris[,5]))
#'
#' ## EMBEDDING WITH PCA
#' X2d = Rdimtools::do.pca(X, ndim=2)$Y
#'
#' ## CLUSTERING WITH DIFFERENT CORESET SIZES WITH K=3
#' core1 = kmeans18B(X, k=3, m=25)$cluster
#' core2 = kmeans18B(X, k=3, m=50)$cluster
#' core3 = kmeans18B(X, k=3, m=100)$cluster
#'
#' ## VISUALIZATION
#' opar <- par(no.readonly=TRUE)
#' par(mfrow=c(1,4), pty="s")
#' plot(X2d, col=lab, pch=19, main="true label")
#' plot(X2d, col=core1, pch=19, main="kmeans18B: m=25")
#' plot(X2d, col=core2, pch=19, main="kmeans18B: m=50")
#' plot(X2d, col=core3, pch=19, main="kmeans18B: m=100")
#' par(opar)
#'
#' @references
#' \insertRef{bachem_scalable_2018}{T4cluster}
#'
#' @concept algorithm
#' @export
kmeans18B <- function(data, k=2, m=round(nrow(data)/2), ...){
## PREPARE : EXPLICIT INPUTS
mydata = prec_input_matrix(data)
myn = base::nrow(mydata)
myk = max(1, round(k))
mym = max(2*myk, round(m))
## PREPARE : IMPLICIT INPUTS
pars = list(...)
pnames = names(pars)
myiter = ifelse(("maxiter" %in% pnames), max(10, round(pars$maxiter)), 10)
mynstart = ifelse(("nstart"%in%pnames), max(1, round(pars$nstart)), 5)
## MULTIPLE RUNS
multiple_runs = list()
multiple_wcss = rep(0, mynstart)
for (i in 1:mynstart){
multiple_runs[[i]] = coreset_18B(mydata, myk, mym, myiter)
multiple_wcss[i] = multiple_runs[[i]]$wcss
}
## SELECT THE BEST RUN
cpprun = multiple_runs[[which.min(multiple_wcss)]]
## WRAP AND RETURN
cpprun$cluster = as.vector(cpprun$cluster)+1
cpprun$algorithm ="kmeans18B"
return(structure(cpprun, class="T4cluster"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.