#' Functional K-Means Clustering by Abraham et al. (2003)
#'
#' Given \eqn{N} curves \eqn{\gamma_1 (t), \gamma_2 (t), \ldots, \gamma_N (t) : I \rightarrow \mathbf{R}},
#' perform \eqn{k}-means clustering on the coefficients from the functional data expanded by
#' B-spline basis. Note that in the original paper, authors used B-splines as the choice of basis
#' due to nice properties. However, we allow other types of basis as well for convenience.
#'
#' @param fdobj a \code{'fd'} functional data object of \eqn{N} curves by the \pkg{fda} package.
#' @param k the number of clusters (default: 2).
#' @param ... extra parameters including \describe{
#' \item{maxiter}{the maximum number of iterations (default: 10).}
#' \item{nstart}{the number of random initializations (default: 5).}
#' }
#'
#' @return a named list of S3 class \code{T4cluster} containing
#' \describe{
#' \item{cluster}{a length-\eqn{N} vector of class labels (from \eqn{1:k}).}
#' \item{mean}{a \code{'fd'} object of \eqn{k} mean curves.}
#' \item{algorithm}{name of the algorithm.}
#' }
#'
#' @examples
#' # -------------------------------------------------------------
#' # two types of curves
#' #
#' # type 1 : sin(x) + perturbation; 20 OF THESE ON [0, 2*PI]
#' # type 2 : cos(x) + perturbation; 20 OF THESE ON [0, 2*PI]
#' # type 3 : sin(x) + cos(0.5x) ; 20 OF THESE ON [0, 2*PI]
#' # -------------------------------------------------------------
#' ## PREPARE : USE 'fda' PACKAGE
#' # Generate Raw Data
#' datx = seq(from=0, to=2*pi, length.out=100)
#' daty = array(0,c(100, 60))
#' for (i in 1:20){
#' daty[,i] = sin(datx) + rnorm(100, sd=0.5)
#' daty[,i+20] = cos(datx) + rnorm(100, sd=0.5)
#' daty[,i+40] = sin(datx) + cos(0.5*datx) + rnorm(100, sd=0.5)
#' }
#' # Wrap as 'fd' object
#' mybasis <- fda::create.bspline.basis(c(0,2*pi), nbasis=10)
#' myfdobj <- fda::smooth.basis(datx, daty, mybasis)$fd
#'
#' ## RUN THE ALGORITHM WITH K=2,3,4
#' fk2 = funkmeans03A(myfdobj, k=2)
#' fk3 = funkmeans03A(myfdobj, k=3)
#' fk4 = funkmeans03A(myfdobj, k=4)
#'
#' ## FUNCTIONAL PCA FOR VISUALIZATION
#' embed = fda::pca.fd(myfdobj, nharm=2)$score
#'
#' ## VISUALIZE
#' opar <- par(no.readonly=TRUE)
#' par(mfrow=c(1,3))
#' plot(embed, col=fk2$cluster, pch=19, main="K=2")
#' plot(embed, col=fk3$cluster, pch=19, main="K=3")
#' plot(embed, col=fk4$cluster, pch=19, main="K=4")
#' par(opar)
#'
#' @references
#' \insertRef{abraham_unsupervised_2003}{T4cluster}
#'
#' @concept functional
#' @export
funkmeans03A <- function(fdobj, k=2, ...){
## PREPARE : EXPLICIT INPUTS
if (!inherits(fdobj,"fd")){
stop("* funkmeans03A : input 'fdobj' should be a 'fd' object.")
}
myk = max(1, round(k))
if (!(fdobj$basis$type=="bspline")){
warning("* funkmeans03A : original paper suggested to use B-splines, but we proceed anyway.")
}
## PREPARE : IMPLICIT INPUTS
pars = list(...)
pnames = names(pars)
myiter = ifelse(("maxiter" %in% pnames), max(10, round(pars$maxiter)), 10)
mynstart = ifelse(("nstart"%in%pnames), max(5,round(pars$nstart)), 5)
## MULTIPLE STARTS
rec_kmeans = list()
for (i in 1:mynstart){
rec_kmeans[[i]] = arma_kmeans_random(as.matrix(fdobj$coefs), myk, myiter)
}
## FIND THE BEST ONE
vec_SSE = rep(0,mynstart)
for (i in 1:mynstart){
tgtrun = rec_kmeans[[i]]
tmplabel = apply(tgtrun$pdmat, 1, which.min)
vec_SSE[i] = kmeans_SSE(tgtrun$pdmat, tmplabel)
}
optrun = rec_kmeans[[which.min(vec_SSE)]]
## SELECT, WRAP, AND RUN
meanobj = fdobj
meanobj$coefs = t(optrun$means)
rownames(meanobj$coefs) = rownames(fdobj$coefs)
output = list()
output$cluster = base::apply(optrun$pdmat, 1, which.min)
output$means = meanobj
output$algorithm ="funkmeans03A"
return(structure(output, class="T4cluster"))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.