#' K-Means Clustering
#'
#' \eqn{K}-means algorithm we provide is a wrapper to the \pkg{Armadillo}'s k-means routine.
#' Two types of initialization schemes are employed. Please see the parameters section for more details.
#'
#' @param data an \eqn{(n\times p)} matrix of row-stacked observations.
#' @param k the number of clusters (default: 2).
#' @param ... extra parameters including \describe{
#' \item{init}{initialization method; either \code{"random"} for random initialization, or \code{"plus"} for k-means++ starting.}
#' \item{maxiter}{the maximum number of iterations (default: 10).}
#' \item{nstart}{the number of random initializations (default: 5).}
#' }
#'
#' @return a named list of S3 class \code{T4cluster} containing
#' \describe{
#' \item{cluster}{a length-\eqn{n} vector of class labels (from \eqn{1:k}).}
#' \item{mean}{a \eqn{(k\times p)} matrix where each row is a class mean.}
#' \item{wcss}{within-cluster sum of squares (WCSS).}
#' \item{algorithm}{name of the algorithm.}
#' }
#'
#' @examples
#' # -------------------------------------------------------------
#' # clustering with 'iris' dataset
#' # -------------------------------------------------------------
#' ## PREPARE
#' data(iris)
#' X = as.matrix(iris[,1:4])
#' lab = as.integer(as.factor(iris[,5]))
#'
#' ## EMBEDDING WITH PCA
#' X2d = Rdimtools::do.pca(X, ndim=2)$Y
#'
#' ## CLUSTERING WITH DIFFERENT K VALUES
#' cl2 = kmeans(X, k=2)$cluster
#' cl3 = kmeans(X, k=3)$cluster
#' cl4 = kmeans(X, k=4)$cluster
#'
#' ## VISUALIZATION
#' opar <- par(no.readonly=TRUE)
#' par(mfrow=c(1,4), pty="s")
#' plot(X2d, col=lab, pch=19, main="true label")
#' plot(X2d, col=cl2, pch=19, main="k-means: k=2")
#' plot(X2d, col=cl3, pch=19, main="k-means: k=3")
#' plot(X2d, col=cl4, pch=19, main="k-means: k=4")
#' par(opar)
#'
#' @references
#' \insertRef{sanderson_armadillo:_2016}{T4cluster}
#'
#' @concept algorithm
#' @export
kmeans <- function(data, k=2, ...){
## PREPARE : EXPLICIT INPUTS
mydata = prec_input_matrix(data)
myk = max(1, round(k))
## PREPARE : IMPLICIT INPUTS
pars = list(...)
pnames = names(pars)
myiter = ifelse(("maxiter" %in% pnames), max(10, round(pars$maxiter)), 10)
myinit = ifelse(("init"%in%pnames), match.arg(tolower(pars$init),c("random","plus")),"plus")
mynstart = ifelse(("nstart"%in%pnames), max(5,round(pars$nstart)), 5)
## MULTIPLE STARTS
rec_class = list()
rec_kmeans = list()
if (all(myinit=="random")){
for (i in 1:mynstart){
rec_kmeans[[i]] = arma_kmeans_random(t(data), myk, myiter)
}
} else {
dmatrix = cpp_pdistMP(mydata, 2, 4)
distobj = stats::as.dist(dmatrix)
for (i in 1:mynstart){
tmplab = extra_kmeanspp(distobj, k=myk)$id.center
rec_kmeans[[i]] = arma_kmeans_kmeanspp(t(data), t(data[tmplab,]), myk, myiter)
}
}
## FIND THE BEST ONE
vec_SSE = rep(0,mynstart)
for (i in 1:mynstart){
tgtrun = rec_kmeans[[i]]
tmplabel = apply(tgtrun$pdmat, 1, which.min)
vec_SSE[i] = kmeans_SSE(tgtrun$pdmat, tmplabel)
}
optrun = rec_kmeans[[which.min(vec_SSE)]]
## SELECT, WRAP, AND RUN
output = list()
output$cluster = base::apply(optrun$pdmat, 1, which.min)
output$means = optrun$means
output$wcss = min(vec_SSE)
output$algorithm ="kmeans"
return(structure(output, class="T4cluster"))
}
# extra for kmeans --------------------------------------------------------
#' @keywords internal
#' @noRd
kmeans_SSE <- function(pdmat, label){
n = nrow(pdmat)
k = ncol(pdmat)
output = 0
for (i in 1:n){
output = output + (as.double(pdmat[i,label[i]])^2)
}
return(output)
}
#' @keywords internal
#' @noRd
kmeans_fast <- function(data, k){
output = arma_kmeans_random(t(data), k, 100)
return(base::apply(output$pdmat, 1, which.min))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.