#' K-Means++ Clustering
#'
#' \eqn{K}-means++ algorithm is usually used as a fast initialization scheme, though
#' it can still be used as a standalone clustering algorithms by first choosing the
#' centroids and assign points to the nearest centroids.
#'
#' @param data an \eqn{(n \times p)} matrix of row-stacked observations.
#' @param k the number of clusters (default: 2).
#'
#' @return a named list of S3 class \code{T4cluster} containing
#' \describe{
#' \item{cluster}{a length-\eqn{n} vector of class labels (from \eqn{1:k}).}
#' \item{algorithm}{name of the algorithm.}
#' }
#'
#' @examples
#' # -------------------------------------------------------------
#' # clustering with 'iris' dataset
#' # -------------------------------------------------------------
#' ## PREPARE
#' data(iris)
#' X = as.matrix(iris[,1:4])
#' lab = as.integer(as.factor(iris[,5]))
#'
#' ## EMBEDDING WITH PCA
#' X2d = Rdimtools::do.pca(X, ndim=2)$Y
#'
#' ## CLUSTERING WITH DIFFERENT K VALUES
#' cl2 = kmeanspp(X, k=2)$cluster
#' cl3 = kmeanspp(X, k=3)$cluster
#' cl4 = kmeanspp(X, k=4)$cluster
#'
#' ## VISUALIZATION
#' opar <- par(no.readonly=TRUE)
#' par(mfrow=c(1,4), pty="s")
#' plot(X2d, col=lab, pch=19, main="true label")
#' plot(X2d, col=cl2, pch=19, main="k-means++: k=2")
#' plot(X2d, col=cl3, pch=19, main="k-means++: k=3")
#' plot(X2d, col=cl4, pch=19, main="k-means++: k=4")
#' par(opar)
#'
#' @references
#' \insertRef{arthur_k-means++:_2007}{T4cluster}
#'
#' @concept algorithm
#' @export
kmeanspp <- function(data, k=2){
## PREPARE : EXPLICIT INPUTS
mydata = prec_input_matrix(data)
myk = max(1, round(k))
## COMPUTE THE LABEL
tmpout = extra_kmeanspp(mydata, k=myk)
## WRAP AND RETURN
output = list()
output$cluster = tmpout$cluster
output$algorithm = "kmeanspp"
return(structure(output, class="T4cluster"))
return(output)
}
# extra functions ---------------------------------------------------------
#' @keywords internal
#' @noRd
extra_kmeanspp <- function(x, k=2){ # covers both case & return center id's.
# prepare
if (is.matrix(x)){
x = cpp_pdistMP(x, 2, 4)
} else {
x = as.matrix(x)
}
n = nrow(x)
K = round(k)
if (K >= n){
stop("* kmeanspp : 'k' should be smaller than the number of observations.")
}
if (K < 2){
stop("* kmeanspp : 'k' should be larger than 1.")
}
id.now = 1:n
# Computation
# initialize
id.center = base::sample(id.now, 1)
id.now = base::setdiff(id.now, id.center)
# iterate
for (i in 1:(K-1)){
# compute distance to the nearest
tmpdmat = x[id.now, id.center]
if (i==1){
d2vec = as.vector(tmpdmat)^2
d2vec = d2vec/base::sum(d2vec)
} else {
d2vec = as.vector(base::apply(tmpdmat, 1, base::min))^2
d2vec = d2vec/base::sum(d2vec)
}
# sample one
id.tmp = base::sample(id.now, 1, prob=d2vec)
# update
id.center = c(id.center, id.tmp)
id.now = base::setdiff(id.now, id.tmp)
}
# let's compute label
dmat = x[,id.center]
cluster = base::apply(dmat, 1, base::which.min)
##################################################
# Return
output = list()
output$cluster = cluster
output$id.center = id.center
return(output)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.