fs.dimred | R Documentation |
This function drops variables that have low communality values and/or are common indicators (i.e., correlates more than one latent variables).
fs.dimred(fn,DF,min_comm=0.25,com_comm=0.25)
fn |
It is a list variable of the output of a principal (PCA), a fa (FA), or an ndr (NDA) function. |
DF |
Numeric data frame, or a numeric matrix of the data table |
min_comm |
Scalar between 0 to 1. Minimal communality value, which a variable has to be achieved. The default value is 0.25. |
com_comm |
Scalar between 0 to 1. The minimal difference value between loadings. The default value is 0.25. |
This function only works with principal, and fa, and ndr functions.
This function drops each variable that has a low communality value (under min_comm value). In other words, that variable does not fit enough of any latent variable.
This function also drops so-called common indicators, which correlate highly with more than one latent variable. And the difference in the correlation is either lower than the com_comm value or the greatest absolute factor loading value is not twice greater than the second greatest factor loading.
dropped_low |
Numeric data frame or numeric matrix. Set of indicators (i.e. variables), which are dropped by their low communalities. This value is NULL if a correlation matrix is used as an input or there is no dropped indicator. |
dropped_com |
Numeric data frame or numeric matrix. Set of dropped common indicators (i.e. common variables). This value is NULL if a correlation matrix is used as an input or there is no dropped indicator. |
remain_DF |
Numeric data frame or numeric matrix. Set of retained indicators |
... |
Other outputs came from |
Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona
e-mail*: kosztyan.zsolt@gtk.uni-pannon.hu
Abonyi, J., Czvetkó, T., Kosztyán, Z. T., & Héberger, K. (2022). Factor analysis, sparse PCA, and Sum of Ranking Differences-based improvements of the Promethee-GAIA multicriteria decision support technique. Plos one, 17(2), e0264277. doi:10.1371/journal.pone.0264277
psych::principal
, psych::fa
, ndr
.
data<-I40_2020
library(psych)
# Principal Component Analysis (PCA)
pca<-principal(data,nfactors=2,covar=TRUE)
pca
# Feature selection with default values
PCA<-fs.dimred(pca,data)
PCA
# List of dropped, low communality value indicators
print(colnames(PCA$dropped_low))
# List of dropped, common communality value indicators
print(colnames(PCA$dropped_com))
# List of retained indicators
print(colnames(PCA$retained_DF))
# Principal Component Analysis (PCA) of correlation matrix
pca<-principal(cor(data,method="spearman"),nfactors=2,covar=TRUE)
pca
# Feature selection
min_comm<-0.25 # Minimal communality value
com_comm<-0.20 # Minimal common communality value
PCA<-fs.dimred(pca,cor(data,method="spearman"),min_comm,com_comm)
PCA
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.