View source: R/summary.ndrlm.R View source: R/nda.R
summary.ndrlm | R Documentation |
Print summary of Generalized Network-based Dimensionality Reduction and Linear Regression Model (NDRLM)
## S3 method for class 'ndrlm'
summary(object, digits = getOption("digits"), ...)
object |
an object of class 'ndrlm'. |
digits |
the number of significant digits to use when |
... |
additional arguments affecting the summary produced. |
Call |
Callback function |
fval |
Objective function for fitting |
pareto |
in the case of multiple objectives TRUE (default value) provides pareto-optimal solution, while FALSE provides weighted mean of objective functions (see out_weights) |
X |
A numeric data frame of input variables |
Y |
A numeric data frame of output variables |
NDA |
GNDA object, which is the result of model reduction and features selection |
fits |
List of linear regrassion models |
NDA_weight |
Weights of input variables (used in |
NDA_min_evalue |
Optimized minimal eigenvector centrality value (used in |
NDA_min_communality |
Optimized minimal communality value of indicators (used in |
NDA_com_communalities |
Optimized
minimal common communalities (used in |
NDA_min_R |
Optimized
minimal square correlation between indicators (used in |
NSGA |
Outpot structure of NSGA-II optimization (list), if the optimization value is true (see in |
fn |
Function (regression) name: NDLM |
Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona
e-mail*: kosztyan.zsolt@gtk.uni-pannon.hu
KosztyƔn, Z. T., Katona, A. I., Kurbucz, M. T., & Lantos, Z. (2024). Generalized network-based dimensionality analysis. Expert Systems with Applications, 238, 121779. <URL: https://doi.org/10.1016/j.eswa.2023.121779>.
biplot
, plot
, print
, ndrlm
.
# Example of summary function of NDRLM without optimization of fittings
X<-freeny.x
Y<-freeny.y
NDRLM<-ndrlm(Y,X,optimize=FALSE)
summary(NDRLM)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.