View source: R/ndr.R View source: R/nda.R
| ndr | R Documentation | 
The main function of Generalized Network-based Dimensionality Reduction and Analysis (GNDA).
ndr(r,covar=FALSE,cor_method=1,cor_type=1,min_R=0,min_comm=2,Gamma=1,null_model_type=4,
mod_mode=6,min_evalue=0,min_communality=0,com_communalities=0,use_rotation=FALSE,
rotation="oblimin",weight=NULL,seed=NULL)
r | 
 A numeric data frame  | 
covar | 
 If this value is FALSE (default), it finds the correlation matrix from the raw data. If this value is TRUE, it uses the matrix r as a correlation/similarity matrix.  | 
cor_method | 
 Correlation method (optional). '1' Pearson's correlation (default), '2' Spearman's correlation, '3' Kendall's correlation, '4' Distance correlation  | 
cor_type | 
 Correlation type (optional). '1' Bivariate correlation (default), '2' partial correlation, '3' semi-partial correlation  | 
min_R | 
 Minimal square correlation between indicators (default: 0).  | 
min_comm | 
 Minimal number of indicators per community (default: 2).  | 
Gamma | 
 Gamma parameter in multiresolution null modell (default: 1).  | 
null_model_type | 
 '1' Differential Newmann-Grivan's null model, '2' The null model is the mean of square correlations between indicators, '3' The null model is the specified minimal square correlation, '4' Newmann-Grivan's modell (default)  | 
mod_mode | 
 Community-based modularity calculation mode: '1' Louvain modularity, '2' Fast-greedy modularity, '3' Leading Eigen modularity, '4' Infomap modularity, '5' Walktrap modularity, '6' Leiden modularity (default)  | 
min_evalue | 
 Minimal eigenvector centrality value (default: 0)  | 
min_communality | 
 Minimal communality value of indicators (default: 0)  | 
com_communalities | 
 Minimal common communalities (default: 0)  | 
use_rotation | 
 FALSE no rotation (default), TRUE the rotation is used.  | 
rotation | 
 "none", "varimax", "quartimax", "promax", "oblimin", "simplimax", and "cluster" are possible rotations/transformations of the solution. "oblimin" is the default, if use_rotation is TRUE.  | 
weight | 
 The weights of columns. The defalt is NULL (no weights).  | 
seed | 
 default seed value (default=NULL, no seed)  | 
NDA both works on low and high simple size datasets. If min_evalue=min_communality=com_communalities=0 than there is no feature selection.
communality | 
 Communality estimates for each item. These are merely the sum of squared factor loadings for that item. It can be interpreted in correlation matrices.  | 
loadings | 
 A standard loading matrix of class “loadings".  | 
uniqueness | 
 Uniqueness values of indicators.  | 
factors | 
 Number of found factors.  | 
EVCs | 
 The list eigenvector centrality value of indicators.  | 
membership | 
 The membership value of indicators.  | 
weight | 
 The weight of indicators.  | 
scores | 
 Estimates of the factor scores are reported (if covar=FALSE).  | 
centers | 
 Colum mean of unstandardized score values.  | 
n.obs | 
 Number of observations specified or found.  | 
use_rotation | 
 FALSE no rotation (default), TRUE the rotation is used.  | 
rotation | 
 "none", "varimax", "quartimax", "promax", "oblimin", "simplimax", and "cluster" are possible rotations/transformations of the solution. "oblimin" is the default, if use_rotation is TRUE.  | 
fn | 
 Factor name: NDA  | 
seed | 
 applied seed value (default=NULL, no seed)  | 
Call | 
 Callback function  | 
Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona
e-mail*: kosztyan.zsolt@gtk.uni-pannon.hu
Kosztyan, Z. T., Kurbucz, M. T., & Katona, A. I. (2022). Network-based dimensionality reduction of high-dimensional, low-sample-size datasets. Knowledge-Based Systems, 109180. doi:10.1016/j.knosys.2022.109180
plot, biplot, summary.
# Dimension reduction without using any hyperparameters
data(swiss)
df<-swiss
p<-ndr(df)
summary(p)
plot(p)
biplot(p)
# Dimension reduction with using hyperparameters
# min_R=0.1 # The mininal square correlation must be grater than 0.1
p<-ndr(df,min_R = 0.1)
summary(p)
plot(p)
# min_evalue=0.1 # Minimal evector centalities must be greater than 0.1
p<-ndr(df,min_evalue = 0.1)
summary(p)
plot(p)
# minimal and common communality value must be greater than 0.25
p<-ndr(df,min_communality = 0.25,
 com_communalities = 0.25)
# Print factor matrix
cor(p$scores)
plot(p)
# Use factor rotation
p<-ndr(df,min_communality = 0.25,
 com_communalities = 0.25,use_rotation=TRUE)
# Print factor matrix
cor(p$scores)
biplot(p)
# Data reduction - clustering
# Distance is Euclidean's distance
# covar=TRUE means only the distance matrix is considered.
q<-ndr(1-normalize(as.matrix(dist(df))),covar=TRUE)
summary(q)
plot(q)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.