View source: R/ndrlm.R View source: R/nda.R View source: R/nda.R
ndrlm | R Documentation |
The main function of Generalized Network-based Dimensionality Reduction and Regression (GNDR) for supervised learning.
ndrlm(Y,X,latents="in",dircon=FALSE,optimize=TRUE,cor_method=1,
cor_type=1,min_comm=2,Gamma=1,
null_model_type=4,mod_mode=1,use_rotation=FALSE,
rotation="oblimin",pareto=FALSE,fit_weights=NULL,
lower.bounds.x = c(rep(-100,ncol(X))),
upper.bounds.x = c(rep(100,ncol(X))),
lower.bounds.latentx = c(0,0,0,0),
upper.bounds.latentx = c(0.6,0.6,0.6,0.3),
lower.bounds.y = c(rep(-100,ncol(Y))),
upper.bounds.y = c(rep(100,ncol(Y))),
lower.bounds.latenty = c(0,0,0,0),
upper.bounds.latenty = c(0.6,0.6,0.6,0.3),
popsize = 20, generations = 30, cprob = 0.7, cdist = 5,
mprob = 0.2, mdist=10, seed=NULL)
Y |
A numeric data frame of output variables |
X |
A numeric data frame of input variables |
latents |
The employs of latent variables: "in" employs latent-independent variables (default); "out" employs latent-dependent variables; "both" employs both latent-dependent and latent independent variables; "none" do not employs latent variable (= multiple regression) |
dircon |
Wether enable or disable direct connection between input and output variables (default=FALSE) |
optimize |
Optimization of fittings (default=TRUE) |
cor_method |
Correlation method (optional). '1' Pearson's correlation (default), '2' Spearman's correlation, '3' Kendall's correlation, '4' Distance correlation |
cor_type |
Correlation type (optional). '1' Bivariate correlation (default), '2' partial correlation, '3' semi-partial correlation |
min_comm |
Minimal number of indicators per community (default: 2). |
Gamma |
Gamma parameter in multiresolution null modell (default: 1). |
null_model_type |
'1' Differential Newmann-Grivan's null model, '2' The null model is the mean of square correlations between indicators, '3' The null model is the specified minimal square correlation, '4' Newmann-Grivan's modell (default) |
mod_mode |
Community-based modularity calculation mode: '1' Louvain modularity (default), '2' Fast-greedy modularity, '3' Leading Eigen modularity, '4' Infomap modularity, '5' Walktrap modularity, '6' Leiden modularity |
use_rotation |
FALSE no rotation (default), TRUE the rotation is used. |
rotation |
"none", "varimax", "quartimax", "promax", "oblimin", "simplimax", and "cluster" are possible rotations/transformations of the solution. "oblimin" is the default, if use_rotation is TRUE. |
pareto |
in the case of multiple objectives TRUE (default value) provides pareto-optimal solution, while FALSE provides weighted mean of objective functions (see out_weights) |
fit_weights |
weights of fitting the output variables (weights of means of objectives) |
lower.bounds.x |
Lower bounds of weights of independent variables in GNDA |
upper.bounds.x |
Upper bounds of weights of independent variables in GNDA |
lower.bounds.latentx |
Lower bounds of hyper-parementers of GNDA for independent variables (values must be positive) |
upper.bounds.latentx |
Upper bounds of hyper-parementers of GNDA for independent variables (value must be lower than one) |
lower.bounds.y |
Lower bounds of weights of dependent variables in GNDA |
upper.bounds.y |
Upper bounds of weights of dependent variables in GNDA |
lower.bounds.latenty |
Lower bounds of hyper-parementers of GNDA for dependent variables (values must be positive) |
upper.bounds.latenty |
Upper bounds of hyper-parementers of GNDA for dependent variables (value must be lower than one) |
popsize |
size of population of NSGA-II for fitting betas (default=20) |
generations |
number of generations to breed of NSGA-II for fitting betas (default=30) |
cprob |
crossover probability of NSGA-II for fitting betas (default=0.7) |
cdist |
crossover distribution index of NSGA-II for fitting betas (default=5) |
mprob |
mutation probability of NSGA-II for fitting betas (default=0.2) |
mdist |
mutation distribution index of NSGA-II for fitting betas (default=10) |
seed |
default seed value (default=NULL, no seed) |
NDRLM is a variable fitting with feature selection based on the tunes of GNDA method with NSGA-II algorithm for parameter fittings.
Call |
Callback function |
fval |
Objective function for fitting |
hyperparams |
optimized hyperparameters |
pareto |
in the case of multiple objectives TRUE provides pareto-optimal solution, while FALSE (default) provides weighted mean of objective functions (see out_weights) |
Y |
A numeric data frame of output variables |
X |
A numeric data frame of input variables |
latents |
Latent model: "in", "out", "both", "none" |
NDAin |
GNDA object, which is the result of model reduction and features selection in the case of employing latent-independent variables |
NDAin_weight |
Weights of input variables (used in |
NDAin_min_evalue |
Optimized minimal eigenvector centrality value (used in |
NDAin_min_communality |
Optimized minimal communality value of indicators (used in |
NDAin_com_communalities |
Optimized
minimal common communalities (used in |
NDAin_min_R |
Optimized
minimal square correlation between indicators (used in |
NDAout |
GNDA object, which is the result of model reduction and features selection in the case of employing latent-dependent variables |
NDAout_weight |
Weights of input variables (used in |
NDAout_min_evalue |
Optimized minimal eigenvector centrality value (used in |
NDAout_min_communality |
Optimized minimal communality value of indicators (used in |
NDAout_com_communalities |
Optimized
minimal common communalities (used in |
NDAout_min_R |
Optimized
minimal square correlation between indicators (used in |
fits |
List of linear regrassion models |
otimized |
Wheter fittings are optimized or not |
NSGA |
Outpot structure of NSGA-II optimization (list), if the optimization value is true (see in |
extra_vars.X |
Logic variable. If direct connection (dircon=TRUE) is allowed not only the latent but the excluded input variables are analyized in the linear models as extra input variables. |
extra_vars.Y |
Logic variable. If direct connection (dircon=TRUE) is allowed not only the latent but the excluded output variables are analyized in the linear models as extra input variables. |
dircon_X |
The list of input variables which are directly connected to output variables. |
dircon_Y |
The list of output variables which are directly connected to output variables. |
fn |
Function (regression) name: NDLM |
Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona
e-mail*: kosztyan.zsolt@gtk.uni-pannon.hu
Kosztyan, Z. T., Kurbucz, M. T., & Katona, A. I. (2022). Network-based dimensionality reduction of high-dimensional, low-sample-size datasets. Knowledge-Based Systems, 109180. doi:10.1016/j.knosys.2022.109180
ndr
, plot
, summary
, mco::nsga2
.
# Using NDRLM with curve fitting optimization
X<-freeny.x
Y<-freeny.y
NDRLM<-ndrlm(Y,X)
summary(NDRLM)
# Using NDRLM without fitting optimization
NDRLM<-ndrlm(Y,X,optimize=FALSE)
summary(NDRLM)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.