ndrlm: Genearlized Network-based Dimensionality Reduction and...

View source: R/ndrlm.R View source: R/nda.R View source: R/nda.R

ndrlmR Documentation

Genearlized Network-based Dimensionality Reduction and Regression (GNDR)

Description

The main function of Generalized Network-based Dimensionality Reduction and Regression (GNDR) for supervised learning.

Usage

ndrlm(Y,X,latents="in",dircon=FALSE,optimize=TRUE,cor_method=1,
                cor_type=1,min_comm=2,Gamma=1,
                null_model_type=4,mod_mode=1,use_rotation=FALSE,
                rotation="oblimin",pareto=FALSE,fit_weights=NULL,
                lower.bounds.x = c(rep(-100,ncol(X))),
                upper.bounds.x = c(rep(100,ncol(X))),
                lower.bounds.latentx = c(0,0,0,0),
                upper.bounds.latentx = c(0.6,0.6,0.6,0.3),
                lower.bounds.y = c(rep(-100,ncol(Y))),
                upper.bounds.y = c(rep(100,ncol(Y))),
                lower.bounds.latenty = c(0,0,0,0),
                upper.bounds.latenty = c(0.6,0.6,0.6,0.3),
                popsize = 20, generations = 30, cprob = 0.7, cdist = 5,
                mprob = 0.2, mdist=10, seed=NULL)

Arguments

Y

A numeric data frame of output variables

X

A numeric data frame of input variables

latents

The employs of latent variables: "in" employs latent-independent variables (default); "out" employs latent-dependent variables; "both" employs both latent-dependent and latent independent variables; "none" do not employs latent variable (= multiple regression)

dircon

Wether enable or disable direct connection between input and output variables (default=FALSE)

optimize

Optimization of fittings (default=TRUE)

cor_method

Correlation method (optional). '1' Pearson's correlation (default), '2' Spearman's correlation, '3' Kendall's correlation, '4' Distance correlation

cor_type

Correlation type (optional). '1' Bivariate correlation (default), '2' partial correlation, '3' semi-partial correlation

min_comm

Minimal number of indicators per community (default: 2).

Gamma

Gamma parameter in multiresolution null modell (default: 1).

null_model_type

'1' Differential Newmann-Grivan's null model, '2' The null model is the mean of square correlations between indicators, '3' The null model is the specified minimal square correlation, '4' Newmann-Grivan's modell (default)

mod_mode

Community-based modularity calculation mode: '1' Louvain modularity (default), '2' Fast-greedy modularity, '3' Leading Eigen modularity, '4' Infomap modularity, '5' Walktrap modularity, '6' Leiden modularity

use_rotation

FALSE no rotation (default), TRUE the rotation is used.

rotation

"none", "varimax", "quartimax", "promax", "oblimin", "simplimax", and "cluster" are possible rotations/transformations of the solution. "oblimin" is the default, if use_rotation is TRUE.

pareto

in the case of multiple objectives TRUE (default value) provides pareto-optimal solution, while FALSE provides weighted mean of objective functions (see out_weights)

fit_weights

weights of fitting the output variables (weights of means of objectives)

lower.bounds.x

Lower bounds of weights of independent variables in GNDA

upper.bounds.x

Upper bounds of weights of independent variables in GNDA

lower.bounds.latentx

Lower bounds of hyper-parementers of GNDA for independent variables (values must be positive)

upper.bounds.latentx

Upper bounds of hyper-parementers of GNDA for independent variables (value must be lower than one)

lower.bounds.y

Lower bounds of weights of dependent variables in GNDA

upper.bounds.y

Upper bounds of weights of dependent variables in GNDA

lower.bounds.latenty

Lower bounds of hyper-parementers of GNDA for dependent variables (values must be positive)

upper.bounds.latenty

Upper bounds of hyper-parementers of GNDA for dependent variables (value must be lower than one)

popsize

size of population of NSGA-II for fitting betas (default=20)

generations

number of generations to breed of NSGA-II for fitting betas (default=30)

cprob

crossover probability of NSGA-II for fitting betas (default=0.7)

cdist

crossover distribution index of NSGA-II for fitting betas (default=5)

mprob

mutation probability of NSGA-II for fitting betas (default=0.2)

mdist

mutation distribution index of NSGA-II for fitting betas (default=10)

seed

default seed value (default=NULL, no seed)

Details

NDRLM is a variable fitting with feature selection based on the tunes of GNDA method with NSGA-II algorithm for parameter fittings.

Value

Call

Callback function

fval

Objective function for fitting

hyperparams

optimized hyperparameters

pareto

in the case of multiple objectives TRUE provides pareto-optimal solution, while FALSE (default) provides weighted mean of objective functions (see out_weights)

Y

A numeric data frame of output variables

X

A numeric data frame of input variables

latents

Latent model: "in", "out", "both", "none"

NDAin

GNDA object, which is the result of model reduction and features selection in the case of employing latent-independent variables

NDAin_weight

Weights of input variables (used in ndr)

NDAin_min_evalue

Optimized minimal eigenvector centrality value (used in ndr)

NDAin_min_communality

Optimized minimal communality value of indicators (used in ndr)

NDAin_com_communalities

Optimized minimal common communalities (used in ndr)

NDAin_min_R

Optimized minimal square correlation between indicators (used in ndr)

NDAout

GNDA object, which is the result of model reduction and features selection in the case of employing latent-dependent variables

NDAout_weight

Weights of input variables (used in ndr)

NDAout_min_evalue

Optimized minimal eigenvector centrality value (used in ndr)

NDAout_min_communality

Optimized minimal communality value of indicators (used in ndr)

NDAout_com_communalities

Optimized minimal common communalities (used in ndr)

NDAout_min_R

Optimized minimal square correlation between indicators (used in ndr)

fits

List of linear regrassion models

otimized

Wheter fittings are optimized or not

NSGA

Outpot structure of NSGA-II optimization (list), if the optimization value is true (see in mco::nsga2)

extra_vars.X

Logic variable. If direct connection (dircon=TRUE) is allowed not only the latent but the excluded input variables are analyized in the linear models as extra input variables.

extra_vars.Y

Logic variable. If direct connection (dircon=TRUE) is allowed not only the latent but the excluded output variables are analyized in the linear models as extra input variables.

dircon_X

The list of input variables which are directly connected to output variables.

dircon_Y

The list of output variables which are directly connected to output variables.

fn

Function (regression) name: NDLM

Author(s)

Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona

e-mail*: kosztyan.zsolt@gtk.uni-pannon.hu

References

Kosztyan, Z. T., Kurbucz, M. T., & Katona, A. I. (2022). Network-based dimensionality reduction of high-dimensional, low-sample-size datasets. Knowledge-Based Systems, 109180. doi:10.1016/j.knosys.2022.109180

See Also

ndr, plot, summary, mco::nsga2.

Examples


# Using NDRLM with curve fitting optimization

X<-freeny.x
Y<-freeny.y
NDRLM<-ndrlm(Y,X)
summary(NDRLM)

# Using NDRLM without fitting optimization

NDRLM<-ndrlm(Y,X,optimize=FALSE)
summary(NDRLM)


kzst/nda documentation built on Dec. 16, 2024, 7:02 a.m.