#-----------------------------------------------------------------------------#
# #
# GENERALIZED NETWORK-BASED DIMENSIONALITY REDUCTION AND ANALYSIS (GNDA) #
# #
# Written by: Zsolt T. Kosztyan*, Marcell T. Kurbucz, Attila I. Katona, #
# Zahid Khan #
# *Department of Quantitative Methods #
# University of Pannonia, Hungary #
# kosztyan.zsolt@gtk.uni-pannon.hu #
# #
# Last modified: February 2024 #
#-----------------------------------------------------------------------------#
## SUMMARY FOR NETWORK-BASED DIMENSIONALITY REDUCTION AND REGRESSION (NDRLM) ##
#' @export
summary.ndrlm <- function(object, digits = getOption("digits"), ...) {
if (!requireNamespace("stats", quietly = TRUE)) {
stop(
"Package \"stats\" must be installed to use this function.",
call. = FALSE
)
}
if (methods::is(object,"ndrlm")){
Call<-object$Call
fval<-object$fval
pareto<-object$pareto
X<-object$X
Y<-object$Y
latents<-object$latents
if (latents %in% c("in","both")){
NDAin<-object$NDAin
NDAin_weight<-object$NDAin_weight
NDAin_min_evalue<-object$NDAin_min_evalue
NDAin_min_communality<-object$NDAin_min_communality
NDAin_com_communalities<-object$NDAin_com_communalities
NDAin_min_R<-object$NDAin_com_communalities
}
if (latents %in% c("out","both")){
NDAout<-object$NDAout
NDAout_weight<-object$NDAout_weight
NDAout_min_evalue<-object$NDAout_min_evalue
NDAout_min_communality<-object$NDAout_min_communality
NDAout_com_communalities<-object$NDAout_com_communalities
NDAout_min_R<-object$NDAout_com_communalities
}
fits<-object$fits
optimized<-object$optimized
if (optimized==TRUE){
NSGA<-object$NSGA
}
extra_vars.X<-object$extra_vars.X
extra_vars.Y<-object$extra_vars.Y
if (latents %in% c("in","both")){
if (extra_vars.X==TRUE){
dircon_X<-object$dircon_X
}
}
if (latents %in% c("out","both")){
if (extra_vars.Y==TRUE){
dircon_Y<-object$dircon_Y
}
}
fn<-object$fn
results<-list(Call=Call,
fval=fval,
pareto=pareto,
X = X,
Y = Y,
latents = latents,
NDAin=unlist(ifelse(latents %in% c("in","both"),
list(NDAin),
list(NULL))),
NDAin_weight=unlist(ifelse(latents %in% c("in","both"),
list(NDAin_weight),
list(NULL))),
NDAin_min_evalue=unlist(ifelse(latents %in% c("in","both"),
list(NDAin_min_evalue),
list(NULL))),
NDAin_min_communality=unlist(ifelse(latents %in% c("in","both"),
list(NDAin_min_communality),
list(NULL))),
NDAin_com_communalities=unlist(ifelse(latents %in% c("in","both"),
list(NDAin_com_communalities),
list(NULL))),
NDAin_min_R=unlist(ifelse(latents %in% c("in","both"),
list(NDAin_min_R),
list(NULL))),
NDAout=unlist(ifelse(latents %in% c("out","both"),
list(NDAout),
list(NULL))),
NDAout_weight=unlist(ifelse(latents %in% c("out","both"),
list(NDAout_weight),
list(NULL))),
NDAout_min_evalue=unlist(ifelse(latents %in% c("out","both"),
list(NDAout_min_evalue),
list(NULL))),
NDAout_min_communality=unlist(ifelse(latents %in% c("out","both"),
list(NDAout_min_communality),
list(NULL))),
NDAout_com_communalities=unlist(ifelse(latents %in% c("out","both"),
list(NDAout_com_communalities),
list(NULL))),
NDAout_min_R=unlist(ifelse(latents %in% c("out","both"),
list(NDAout_min_R),
list(NULL))),
fits = fits,
optimized=optimized,
NSGA=unlist(ifelse(optimized==TRUE,
list(NSGA),
list(NULL))),
extra_vars.X=extra_vars.X,
extra_vars.Y=extra_vars.Y,
dircon_X=unlist(ifelse((extra_vars.X==TRUE)&&latents %in% c("in","both"),
list(dircon_X),
list(NULL))),
dircon_Y=unlist(ifelse((extra_vars.Y==TRUE)&&latents %in% c("out","both"),
list(dircon_Y),
list(NULL))),
fn=fn)
print.ndrlm(object)
}else{
summary(object,...)
}
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.