Description Usage Arguments Value Examples
Performs Bayesian Logistic Regression Model training by sampling beta from posterior distribution with user specified parameters and data
1 2 3 4 5 6 7 8 9 10 | BLRM.fit.mwg(
Y0,
X0,
PriorVar,
propSD0,
nMC = 1000,
nBI = 250,
thin = 5,
seed = 1
)
|
Y0 |
vector of responses |
X0 |
covariate matrix |
PriorVar |
variance of prior distribution of beta |
propSD0 |
vector of standard deviations for normal proposal density |
nMC |
number of MCMC samples |
nBI |
number of burn-in samples |
thin |
number of samples to skip over in thinning |
seed |
set seed for random number generation |
a nested list of beta samples, and beta acceptance rates
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## simulate data;
set.seed(1);
N = 100;
p = 10;
X = matrix(data = rnorm(N*p), nrow=N, ncol=p)
beta_true = c(rep(1,p/2),rep(0,p/2))
eta = X %*% beta_true
pi = exp(eta) / (1 + exp(eta))
Y = rbinom(N,1,pi)
propSD = rep(1,p)
## fit model;
test1 <- G3proj::BLRM.fit.mwg(Y0 = Y, X0 = X, PriorVar = 1000, propSD0 = propSD,
nMC = 500, nBI = 100, thin = 5)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.