Description Usage Arguments Value Examples
Performs SSVS for a logistic regression model with user specified parameters and data
1 2 3 4 5 6 7 8 9 10 11 | SSVS.Logistic(
Y0,
X0,
propSD0,
c0,
tau0,
nMC = 1000L,
nBI = 250L,
thin = 5L,
seed = 1L
)
|
Y0 |
vector of responses |
X0 |
covariate matrix without intercept |
propSD0 |
vector of standard deviations for normal proposal density |
c0 |
parameter for spike and slab prior of beta |
tau0 |
parameter for spike and slab prior of beta |
nMC |
number of MCMC samples |
nBI |
number of burn-in samples |
thin |
number of samples to skip over in thinning |
seed |
set seed for random number generation |
a nested list of gamma samples, beta samples, and beta acceptance rates
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## simulate data
set.seed(1)
N = 100
p = 10
X = matrix(data = rnorm(N*p), nrow=N, ncol=p)
beta_true = c(rep(1,p/2),rep(0,p/2))
eta = X %*% beta_true
pi = exp(eta) / (1 + exp(eta))
Y = rbinom(N,1,pi)
propSD0 = rep(.5,p)
## fit model;
test1 <- G3proj::SSVS.Logistic(Y0 = Y, X0 = X, propSD0, c0 = 10,
tau0 = 0.4, nMC = 1000, nBI = 100, thin=1, seed=1)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.