tb1simple2: tb1simple2: tb1 module for propensity score analysis for...

Description Usage Arguments Details Value See Also Examples

View source: R/tb1simple.R

Description

tb1 module for propensity score analysis for reactive data

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
tb1simple2(
  input,
  output,
  session,
  data,
  matdata,
  data_label,
  data_varStruct = NULL,
  vlist,
  group_var,
  showAllLevels = T
)

Arguments

input

input

output

output

session

session

data

Original reactive data with propensity score

matdata

Matching reactive data

data_label

Reactive data label

data_varStruct

List of variable structure, Default: NULL

vlist

List including factor/continuous/binary/except/non-normal variables

group_var

Group variable to run propensity score analysis.

showAllLevels

Show All label information with 2 categorical variables, Default: T

Details

Table 1 module server for propensity score analysis

Value

Table 1 with original data/matching data/IPTW data

See Also

CreateTableOneJS svydesign

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
library(shiny);library(DT);library(data.table);library(readxl);library(jstable)
library(haven);library(survey)
ui <- fluidPage(
   sidebarLayout(
   sidebarPanel(
     FilePsInput("datafile"),
     tb1simpleUI("tb1")
   ),
   mainPanel(
     DTOutput("table1_original"),
     DTOutput("table1_ps"),
     DTOutput("table1_iptw")
   )
 )
)

server <- function(input, output, session) {

  mat.info <- callModule(FilePs, "datafile")

  data <- reactive(mat.info()$data)
  matdata <- reactive(mat.info()$matdata)
  data.label <- reactive(mat.info()$data.label)


  vlist <- eventReactive(mat.info(), {
    mklist <- function(varlist, vars){
      lapply(varlist,
             function(x){
               inter <- intersect(x, vars)
               if (length(inter) == 1){
                 inter <- c(inter, "")
               }
               return(inter)
             })
    }
    factor_vars <- names(data())[data()[, lapply(.SD, class) %in% c("factor", "character")]]
    factor_list <- mklist(data_varStruct(), factor_vars)
    conti_vars <- setdiff(names(data()), c(factor_vars, "pscore", "iptw"))
    conti_list <- mklist(data_varStruct(), conti_vars)
    nclass_factor <- unlist(data()[, lapply(.SD, function(x){length(unique(x)[!is.na(unique(x))])}),
                                   .SDcols = factor_vars])
    class01_factor <- unlist(data()[, lapply(.SD, function(x){identical(levels(x), c("0", "1"))}),
                                    .SDcols = factor_vars])
    validate(
      need(!is.null(class01_factor), "No categorical variables coded as 0, 1 in data")
   )
    factor_01vars <- factor_vars[class01_factor]
    factor_01_list <- mklist(data_varStruct(), factor_01vars)
    group_vars <- factor_vars[nclass_factor >=2 & nclass_factor <=10 & nclass_factor < nrow(data())]
    group_list <- mklist(data_varStruct(), group_vars)
    except_vars <- factor_vars[nclass_factor>10 | nclass_factor==1 | nclass_factor==nrow(data())]

    ## non-normal: shapiro test
      f <- function(x) {
        if (diff(range(x, na.rm = T)) == 0) return(F) else return(shapiro.test(x)$p.value <= 0.05)
      }

      non_normal <- ifelse(nrow(data()) <=3 | nrow(data()) >= 5000,
                           rep(F, length(conti_vars)),
                           sapply(conti_vars, function(x){f(data()[[x]])})
      )
      return(list(factor_vars = factor_vars, factor_list = factor_list, conti_vars = conti_vars,
                  conti_list = conti_list, factor_01vars = factor_01vars,
                  factor_01_list = factor_01_list, group_list = group_list,
                  except_vars = except_vars, non_normal = non_normal)
      )

    })

  out.tb1 <- callModule(tb1simple2, "tb1", data = data, matdata = matdata, data_label = data.label,
                        data_varStruct = NULL, vlist = vlist,
                        group_var = reactive(mat.info()$group_var))

  output$table1_original <- renderDT({
    tb <- out.tb1()$original$table
    cap <- out.tb1()$original$caption
    out <- datatable(tb, rownames = T, extension= "Buttons", caption = cap)
    return(out)
  })

  output$table1_ps <- renderDT({
    tb <- out.tb1()$ps$table
    cap <- out.tb1()$ps$caption
    out <- datatable(tb, rownames = T, extension= "Buttons", caption = cap)
    return(out)
  })

  output$table1_iptw <- renderDT({
    tb <- out.tb1()$iptw$table
    cap <- out.tb1()$iptw$caption
    out <- datatable(tb, rownames = T, extension= "Buttons", caption = cap)
    return(out)
  })
}

leevenstar/jstest documentation built on Dec. 23, 2021, 12:16 a.m.