#' This function gives a deterministic realization for n countries
#' with a given regulated strategy and quarantine duration required by
#' the destination countries for all travel out countries.
#' It also keeps track the number of new imported active confirmed cases
#' and traveler status before and after done quarantine.
#' @param thetamatrix is a matrix of parameters, parameters of each country is on 1 row
#' @param inp is a list include durationtravel : durationtravel (days),
#' durationquarantine_adjustedin : number of days people travel in have to quarantine based on each country policy,
#' travelregulated: a list of travel allowed from 1 country to another during the duration,
#' initialmatrix is a matrix of initial compartments of countries, each country is on 1 row, and
#' quarantinerate is the rate people follow quarantine
#'
#' @return The a stochastic realization of n countries with travel data regulated, also returns
#' travelers status before and after quarantine, and active confirm update during the quarantine time
#' @examples
#' \dontrun{
#' library(CONETTravel)
#' ######function generating parameters with R0 in a given range
#' thetagenerating = function(lowerbound, upperbound){
#' tmp2 = 1 # need for kick off
#' while(tmp2 >0){
#' theta = c( alpha0 = 0,alpha = runif(1,0,1),beta = runif(1,0,.25), delta=runif(1,0,.25),
#' eta=1, gamma=runif(1,0,1) )
#' tmp1 = theta[2]/(theta[3] + theta[6])
#' tmp2 = (tmp1 - lowerbound)*(tmp1 - upperbound)
#' }
#' return(theta)
#' }
#' ############ function generate theta matrix
#' thetafunction <- function(numbercountries){
#' thetamat = matrix(0, nrow=numbercountries, ncol=6)
#' for(i in 1:numbercountries){
#' thetamat[i,] = thetagenerating(0.47,6.47) # R0 belongs to .47, 6.47
#' }
#' return(thetamat)
#' }
#' ###########initial matrix function
#' initialmatrix_func = function(numbercountries){
#' initialmatrix = matrix(0, numbercountries, 6)
#' for (country in 1:numbercountries){
#' P = round(runif(1, 50000, 20000000000), digits=0)
#' I = round(runif(1, 0, 2000), digits=0)
#' S = P - I
#' initialmatrix[country,] = c(S, I, 0, 0,0,0)
#' }
#' return(initialmatrix)
#'}
#'############function generate travel data
#'traveldata_func = function(P, numbercountries, travelrate, durationtravel){
#' traveldata = matrix(0, nrow = durationtravel, ncol = numbercountries)
#' for( day in 1:durationtravel){
#' for (country in 1:numbercountries){
#' Totaltravel = P[country]*travelrate
#' SdTotaltravel = Totaltravel*.05
#' traveldata[day,country] = round(rnorm(1, Totaltravel, SdTotaltravel), digits=0)
#' }
#' }
#' return(traveldata)
#' }
#' #############
#' numbercountries = 3 # choose the number of countries
#' initial_corona = initialmatrix_func(numbercountries)
#' P = rowSums(initial_corona)
#' travelrate = 40/(365*328) #a given travel rate each day
#' durationtravel = 84 # number of days travel
#generate total travel out data for each country
#' travelout_data = traveldata_func(P, numbercountries, travelrate, durationtravel)
#' #generate theta matrix for each countries
#' thetamatrix = thetafunction(numbercountries)
#' ratein = 1 # policy that allows full rate of travel in
#' traveloutDivideRegulated = totaltravelout_samerate_regulated(travelout_data, ratein, P)
#' inp = list(durationtravel = durationtravel, travelregulated = traveloutDivideRegulated,
#' initialmatrix = initial_corona, quarantinerate = 1, durationquarantine_adjustedin = rep(14,numbercountries))
#' deterministicmodel_inadjust_pandemictravel(thetamatrix, inp)
#' }
#' @export
deterministicmodel_inadjust_pandemictravel = function (thetamatrix, inp)
{
harzard1 = function(x, theta) {
h1 = (theta[1] + theta[2]) * x[1] * x[2]/sum(x)
names(h1) = c("hazard1")
return(h1)
}
harzard2 = function(x, theta) {
h2 = theta[6] * x[2]
names(h2) = c("hazard2")
return(h2)
}
harzard3 = function(x, theta) {
h3 = theta[3] * x[3]
names(h3) = c("hazard3")
return(h3)
}
harzard4 = function(x, theta) {
h4 = theta[4] * x[3]
names(h4) = c("hazard4")
return(h4)
}
harzard5 = function(x, theta) {
h5 = theta[5] * theta[3] * x[2]
names(h5) = c("hazard5")
return(h5)
}
numbercountries = nrow(inp$initialmatrix)
compartments = ncol(inp$initialmatrix)
status_matrix = matrix(0, nrow = inp$durationtravel, ncol = numbercountries *
compartments)
f_in = matrix(0, nrow = inp$durationtravel, ncol = numbercountries *
compartments)
f_out = matrix(0, nrow = inp$durationtravel, ncol = numbercountries *
compartments)
totalduration = inp$durationtravel + max(inp$durationquarantine_adjustedin) +
inp$durationtravel - 1
f_in_donequarantine = matrix(0, nrow = totalduration, ncol = numbercountries *
compartments) ##Note 2. this is a new addition
f_in_prequarantine = matrix(0, nrow = totalduration, ncol = numbercountries *
compartments) ##Note 2. this is a new addition
f_in_activequarantine = matrix(0, nrow = totalduration, ncol = numbercountries *
compartments) ##Note 2. this is a new addition
f_in_activenoquarantine = matrix(0, nrow = totalduration, ncol = numbercountries *
compartments) ##Note 2. this is a new addition
##This need since if quarantine required, then during this time active confirmed also updated till the end.
f_in_activequarantine_add= matrix(0, nrow = totalduration, ncol = numbercountries * compartments)
##This also needed since if no quarantine require then eventually things also become active confirmed
f_in_activenoquarantine_add= matrix(0, nrow = totalduration, ncol = numbercountries * compartments)
initial = rep(0, numbercountries * compartments)
for (val3 in 1:numbercountries) {
h1 = 1 + (val3 - 1) * 6
h2 = 6 + (val3 - 1) * 6
initial[h1:h2] = inp$initialmatrix[val3, ]
}
status_matrix[1, ] = initial
###########################################
##start loop for i at each time step
for (i in 2:inp$durationtravel) {
traveloutregulated = as.matrix(inp$travelregulated[[i]])
totaltravelout = rowSums(traveloutregulated)
##internal pandemic at each country at the i-th time step
for (j in 1:numbercountries) {
c1 = (j - 1) * 6 + 1
c2 = j * 6
x = status_matrix[(i - 1), c1:c2]
out = totaltravelout[j]
if (x[1] + x[2] > 0) {
outj = c(round(out * x[1]/(x[1] + x[2]), digits = 0),
round(out * x[2]/(x[1] + x[2]), digits = 0),
0, 0, 0, 0)
f_out[i, c1:c2] = outj
}
else {
f_out[i, c1:c2] = c(0, 0, 0, 0, 0, 0)
}
theta = thetamatrix[j, ]
y1 = harzard1(x, theta)
y2 = harzard2(x, theta)
y3 = harzard3(x, theta)
y4 = harzard4(x, theta)
y5 = harzard5(x, theta)
if (y1 <= x[1]) {
x[1] = x[1] - y1
}
else {
y1 = x[1]
x[1] = 0
}
if (y1 - y2 - y5 + x[2] >= 0) {
x[2] = x[2] + y1 - y2 - y5
}
else {
y2 = x[2] + y1 - y5
x[2] = 0
}
if (y2 < 0) {
y2 = 0
y5 = x[2] + y1
}
if (y2 - y3 - y4 + x[3] >= 0) {
x[3] = x[3] + y2 - y3 - y4
}
else {
y3 = y2 - y4 + x[3]
x[3] = 0
}
if (y3 < 0) {
y3 = 0
y4 = x[3] + y2
}
x[4] = x[4] + y3
x[5] = x[5] + y4
x[6] = x[6] + y5
status_matrix[i, c1:c2] = x
} #end loop for j, internal pandemic done
##start update external pandemic by travelling
##distribute compartments of travel from one country to another
f_outmat = matrix(0, nrow = numbercountries, ncol = numbercountries *
compartments)
for (val in 1:numbercountries) {
d1 = (val - 1) * 6 + 1
d2 = val * 6
f_outtotal = f_out[i, ][d1:d2]
d3 = d1 + 1
infect_outtotal = f_out[i, ][d3]
probdistribute = rep(0, numbercountries)
####define the weight for multinomial based on traffic data
for (val6 in 1:numbercountries) {
if (sum(traveloutregulated[val, ]) > 0) {
probdistribute[val6] = traveloutregulated[val,
val6]/sum(traveloutregulated[val, ])
}else{
probdistribute[val6] = 0
}
} #end loop for val6
if (sum(traveloutregulated[val, ]) > 0) {
infect_outdistribute = rmultinom(1, size = infect_outtotal,
prob = probdistribute)
}else{
infect_outdistribute = rep(0, numbercountries)
}
###end multinomial distribute
##################
for (val1 in 1:numbercountries) {
e1 = (val1 - 1) * 6 + 1
e2 = val1 * 6
if (sum(traveloutregulated[val, ]) > 0) {
tmp = round(f_outtotal * traveloutregulated[val,
val1]/sum(traveloutregulated[val, ]), digits = 0)
suseptible = tmp[1] + tmp[2] - infect_outdistribute[val1]
f_outmat[val, e1:e2] = tmp
}
else {
f_outmat[val, e1:e2] = rep(0, 6)
}
} # end loop for val1
#############
} #end loop for val, done with distribute compartments of travel from one country to another
########################################
#####################3. Note3: Add up number enter each country
for (val2 in 1:numbercountries) {
f1 = (val2 - 1) * 6 + 1
f2 = val2 * 6
f_in[i, f1:f2] = colSums(f_outmat[, f1:f2])
} ##end val2 group, count total enter the country at step i-th
f_in[i, ] = round(f_in[i, ], digits = 0)
#####################################################
#################Note 4: Add up things after arrivals done with quarantine both active confirmed and added compartments
for (qua in 1:numbercountries) {
a1 = 1 + (qua - 1) * 6
a2 = 6 + (qua - 1) * 6
a3 = 3 + (qua - 1) * 6
quarantineinp = inp$quarantinerate * f_in[i, a1:a2]
##input with quarantine duration required
inp1 = list(durationquarantine = inp$durationquarantine_adjustedin[qua],
ini = quarantineinp)
##inp with no quarantine require or the prequarantine list
inp2 = list(durationquarantine = 0, ini = quarantineinp)
##parameter of the destination country
theta1 = thetamatrix[qua, ]
############
i1 = i + inp$durationquarantine_adjustedin[qua]
i2 = i + 0
########inp3 to keep track imported active confirmed eventually no matter quarantine or not
iadd = (inp$durationtravel - 1) + inp$durationquarantine_adjustedin[qua]
i3 = i + iadd # this helps to keep track the quarantine imported which eventually become active confirmed even quarantine required
inp3 = list(durationquarantine = iadd, ini = quarantineinp)
###
tmp = stochastic_postquarantine_separate(theta1, inp1) #quarantine require
#############################
tmp2 = stochastic_postquarantine_separate(theta1, inp2) #no quarantine require
tmp3 = stochastic_postquarantine_separate(theta1, inp3) # use to check A evolving eventually
#####################
f_in_prequarantine[i2, a1:a2] = tmp2$donequarantine
f_in_activenoquarantine[i:i3, a3] = tmp3$activeconfirm_eachday[, 3]
##Batch back in case no quarantine require
if (inp$durationquarantine_adjustedin[qua] > 0) {
f_in_donequarantine[i1, a1:a2] = tmp$donequarantine
f_in_activequarantine[i:i1, a3] = tmp$activeconfirm_eachday[, 3]
}
else {
f_in_donequarantine[i, a1:a2] = tmp$donequarantine
f_in_activequarantine[i, a3] = tmp$activeconfirm_eachday[3]
}
}
############################
##########################
f_in_activequarantine_add = f_in_activequarantine_add + f_in_activequarantine
f_in_activenoquarantine_add = f_in_activenoquarantine_add + f_in_activenoquarantine
############################
###########################update with quarantine in after done with quarantine and rate of quarantine
update = status_matrix[i, ] + f_in_donequarantine[i,
] + (1 - inp$quarantinerate) * f_in[i, ] - f_out[i,
] + f_in_activequarantine_add[i, ]
##############################
update[update < 0.5] = 0
status_matrix[i, ] = update
} # end loop for time step i, i =2 ..84
mylist = list(model_output = round(status_matrix, digits = 0), activeconfirm_imported = round(f_in_activenoquarantine_add[1:inp$durationtravel,
], digits = 0), travelarrival_postquarantine = round(f_in_donequarantine[1:inp$durationtravel,
], digits = 0), travelarrival_prequarantine = round(f_in_prequarantine[1:inp$durationtravel,
], digits = 0))
return (mylist)}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.