Description Details Author(s) References See Also Examples
The EBSeqHMM package implements an auto-regressive hidden Markov model for statistical analysis in ordered RNA-seq experiments (e.g. time course or spatial course data). The EBSeqHMM package provides functions to identify genes and isoforms that have non-constant expression profile over the time points/positions, and cluster them into expression paths.
Package: | EBSeqHMM |
Type: | Package |
Version: | 0.99.1 |
Date: | 2014-09-16 |
License: | Artistic-2.0 |
Ning Leng, Christina Kendziorski Maintainer: Ning Leng <nleng@wisc.edu>
Leng, N., Li, Y., Mcintosh, B. E., Nguyen, B. K., Duffin, B., Tian, S., Thomson, J. A., Colin, D., Stewart, R. M., and Kendziorski, C. (2014). Ebseq-hmm: A bayesian approach for identifying gene-expression changes in ordered rna-seq experiments.
EBSeq
1 2 3 4 5 6 | data(GeneExampleData)
CondVector <- rep(paste("t",1:5,sep=""),each=3)
Conditions <- factor(CondVector, levels=c("t1","t2","t3","t4","t5"))
Sizes <- MedianNorm(GeneExampleData)
EBSeqHMMGeneOut <- EBSeqHMMTest(Data=GeneExampleData, sizeFactors=Sizes, Conditions=Conditions,
UpdateRd=2)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.