BGLR_GAGS_VS <- function(train_genotypes, train_phenotype,train_GM=NULL,train_GD=NULL,train_PCA=NULL,test_genotypes,test_phenotype,test_PCA=NULL,model="RKHS",Kernel="Markers",GWAS="BLINK",alpha=0.05,threshold=NULL, markers=NULL, nIter = 15000, burnIn = 5000,Sparse=FALSE,m=NULL,degree=NULL, nL=NULL,QTN=10,PCA.total=3,transformation=NULL)
{
# Make the CV list
if(Kernel=="Markers"){
if(!is.null(markers)){
genotypes=rbind(train=myGD_train,test=myGD_test)
samp=sample(1:ncol(genotypes), markers)
genotypes=genotypes[,samp]
}else{
genotypes=rbind(train=train_genotypes,test=test_genotypes)
}
}else{
genotypes=rbind(train=train_genotypes,test=test_genotypes)
maf <- calc_maf_apply(genotypes, encoding = c(0, 1, 2))
mono_indices <- which(maf ==0)
if(length(mono_indices)!=0){
genotypes = genotypes[,-mono_indices]
}
if(Sparse==TRUE){
X=as.matrix(genotypes)
X=apply(genotypes,2,as.numeric)
#sum(rowSums(is.na(X)))
XS<-scale(X,center=TRUE,scale=TRUE)
#sum(rowSums(is.na(XS)))
library(caret)
nzv <- nearZeroVar(XS)
XSZV <- XS[, -nzv]
#sum(rowSums(is.na(XSZV)))
X=XSZV
K=Sparse_Kernel_Construction(m=m,X=X,name=Kernel, degree=degree,nL=nL)
}else{
X=as.matrix(genotypes)
X=apply(genotypes,2,as.numeric)
#sum(rowSums(is.na(X)))
XS<-scale(X,center=TRUE,scale=TRUE)
#sum(rowSums(is.na(XS)))
library(caret)
nzv <- nearZeroVar(XS)
XSZV <- XS[, -nzv]
#sum(rowSums(is.na(XSZV)))
X=XSZV
K=Kernel_computation(X=X,name=Kernel,degree=degree, nL=nL)
}
}
if(transformation=="sqrt"){
train_phenotype[,2]=replace(train_phenotype[,2], train_phenotype[,2] < 0, 0)
test_phenotype[,2]=replace(test_phenotype[,2], test_phenotype[,2] < 0, 0)
train_phenotype[,2] <-sqrt(train_phenotype[,2])
test_phenotype[,2] <-sqrt(test_phenotype[,2])
pheno_test=test_phenotype
pheno_test[,2]<-NA
pheno_train <- c(train=train_phenotype[,2],test=pheno_test[,2])
}
if(transformation=="log"){
train_phenotype[,2]=replace(train_phenotype[,2], train_phenotype[,2] <= 0, 0.000001)
test_phenotype[,2]=replace(test_phenotype[,2], test_phenotype[,2] <= 0, 0.000001)
train_phenotype[,2] <-log(train_phenotype[,2])
test_phenotype[,2] <-log(test_phenotype[,2])
pheno_test=test_phenotype
pheno_test[,2]<-NA
pheno_train <- c(train=train_phenotype[,2],test=pheno_test[,2])
}
if(transformation=="boxcox"){
train_phenotype[,2] <-boxcox_t(train_phenotype[,2])
test_phenotype[,2] <-boxcox_t(test_phenotype[,2])
pheno_test=test_phenotype
pheno_test[,2]<-NA
pheno_train <- c(train=train_phenotype[,2],test=pheno_test[,2])
}
if(transformation=="none"){
pheno_test=test_phenotype
pheno_test[,2]<-NA
pheno_train <- c(train=train_phenotype[,2],test=pheno_test[,2])
}
GWASR<- GAPIT(Y = train_phenotype,
GD = train_GD,
GM = train_GM,
PCA.total=PCA.total,
model = GWAS,
file.output=F)
if(threshold=="Bonferonni"){
GWASSM <- which(GWASR$GWAS$P.value <= alpha/length(GWASR$GWAS$P.value))
if(length(GWASSM)==0){
acc <- NA
sacc <- NA
metrics=c(RMSE=NA,Rsquared=NA,MAE=NA)
results=c(ACC=acc,SACC=sacc,metrics)
prediction=data.frame(test_phenotype,GEBV=NA)
}else{
sm=as.character(GWASR$GWAS[GWASSM,]$SNP)
myCV<-as.matrix(genotypes[,sm])
if(!is.null(train_PCA)){
myPCA_train <- train_PCA
myPCA_test <- test_PCA
PCA<-rbind(train_PCA,test_PCA)
fix_PC=as.matrix(cbind(myCV,PCA))
if(Kernel=="Markers"){
ETA<-list(list(X=fix_PC,model="FIXED"),G=list(X=as.matrix(genotypes),model=model))
BGLR_results <- BGLR(y = pheno_train, ETA = ETA, nIter=nIter, burnIn=burnIn)
predictions <- predict(BGLR_results)
}else{
ETA<-list(list(X=fix_PC,model="FIXED"),G=list(K=K,model=model))
BGLR_results <- BGLR(y = pheno_train, ETA = ETA, nIter=nIter, burnIn=burnIn)
predictions <- predict(BGLR_results)
}
acc <- cor(predictions[-c(1:length(train_phenotype[,2]))], test_phenotype[,2], use = "pairwise.complete")
sacc <- cor(predictions[-c(1:length(train_phenotype[,2]))], test_phenotype[,2], use = "pairwise.complete", method = c("spearman"))
metrics=postResample(pred=predictions[-c(1:length(train_phenotype[,2]))],obs=test_phenotype[,2])
results=c(ACC=acc,SACC=sacc,metrics)
prediction=data.frame(test_phenotype,GEBV=predictions[-c(1:length(train_phenotype[,2]))])
}else{
if(Kernel=="Markers"){
ETA<-list(list(X=myCV,model="FIXED"),G=list(X=as.matrix(genotypes),model=model))
BGLR_results <- BGLR(y = pheno_train, ETA = ETA, nIter=nIter, burnIn=burnIn)
predictions <- predict(BGLR_results)
}else{
ETA<-list(list(X=myCV,model="FIXED"),G=list(K=K,model=model))
BGLR_results <- BGLR(y = pheno_train, ETA = ETA, nIter=nIter, burnIn=burnIn)
predictions <- predict(BGLR_results)
}
acc <- cor(predictions[-c(1:length(train_phenotype[,2]))], test_phenotype[,2], use = "pairwise.complete")
sacc <- cor(predictions[-c(1:length(train_phenotype[,2]))], test_phenotype[,2], use = "pairwise.complete", method = c("spearman"))
metrics=postResample(pred=predictions[-c(1:length(train_phenotype[,2]))],obs=test_phenotype[,2])
results=c(ACC=acc,SACC=sacc,metrics)
prediction=data.frame(test_phenotype,GEBV=predictions[-c(1:length(train_phenotype[,2]))])
}
}
}else{
top10=GWASR$GWAS[order(GWASR$GWAS$P.value),]
GWASSM=top10[1:QTN,]$SNP
myCV<-as.matrix(genotypes[,GWASSM])
if(!is.null(train_PCA)){
myPCA_train <- train_PCA
myPCA_test <- test_PCA
PCA<-rbind(train_PCA,test_PCA)
fix_PC=as.matrix(cbind(myCV,PCA))
if(Kernel=="Markers"){
ETA<-list(list(X=fix_PC,model="FIXED"),G=list(X=as.matrix(genotypes),model=model))
BGLR_results <- BGLR(y = pheno_train, ETA = ETA, nIter=nIter, burnIn=burnIn)
predictions <- predict(BGLR_results)
}else{
ETA<-list(list(X=fix_PC,model="FIXED"),G=list(K=K,model=model))
BGLR_results <- BGLR(y = pheno_train, ETA = ETA, nIter=nIter, burnIn=burnIn)
predictions <- predict(BGLR_results)
}
acc <- cor(predictions[-c(1:length(train_phenotype[,2]))], test_phenotype[,2], use = "pairwise.complete")
sacc <- cor(predictions[-c(1:length(train_phenotype[,2]))], test_phenotype[,2], use = "pairwise.complete", method = c("spearman"))
metrics=postResample(pred=predictions[-c(1:length(train_phenotype[,2]))],obs=test_phenotype[,2])
results=c(ACC=acc,SACC=sacc,metrics)
prediction=data.frame(test_phenotype,GEBV=predictions[-c(1:length(train_phenotype[,2]))])
}else{
if(Kernel=="Markers"){
ETA<-list(list(X=myCV,model="FIXED"),G=list(X=as.matrix(genotypes),model=model))
BGLR_results <- BGLR(y = pheno_train, ETA = ETA, nIter=nIter, burnIn=burnIn)
predictions <- predict(BGLR_results)
}else{
ETA<-list(list(X=myCV,model="FIXED"),G=list(K=K,model=model))
BGLR_results <- BGLR(y = pheno_train, ETA = ETA, nIter=nIter, burnIn=burnIn)
predictions <- predict(BGLR_results)
}
acc <- cor(predictions[-c(1:length(train_phenotype[,2]))], test_phenotype[,2], use = "pairwise.complete")
sacc <- cor(predictions[-c(1:length(train_phenotype[,2]))], test_phenotype[,2], use = "pairwise.complete", method = c("spearman"))
metrics=postResample(pred=predictions[-c(1:length(train_phenotype[,2]))],obs=test_phenotype[,2])
results=c(ACC=acc,SACC=sacc,metrics)
prediction=data.frame(test_phenotype,GEBV=predictions[-c(1:length(train_phenotype[,2]))])
}
}
names(results)<- c("Pearson","Spearman","RMSE","R2","MAE")
results_ALL=list(Results=results,Predictions=prediction)
return(results_ALL)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.