GLM_CV <- function(genotypes, phenotype,markers=NULL,Kernel="Markers",fam="poisson", folds = 5,Sparse=FALSE,m=NULL,degree=NULL, nL=NULL){
fold_list <- make_CV_sets(length(phenotype[,2]), k = folds)
BGLR_acc_results <- list()
BGLR_acc_predictions<- list()
Predictions_ALL<-c()
for (i in 1:length(fold_list))
{
fold_indices <- which(fold_list[[i]])
# Split into training and testing data
myY_train <- phenotype[fold_indices,2]
myY_test <- phenotype[-fold_indices,2]
if(Kernel=="Markers"){
if(!is.null(markers)){
samp=sample(1:ncol(genotypes), markers)
m_samp=genotypes[,samp]
myGD_train <- m_samp[fold_indices,]
myGD_test <- m_samp[-fold_indices,]
}else{
myGD_train <- genotypes[fold_indices,]
myGD_test <- genotypes[-fold_indices,]
}
}else{
maf <- calc_maf_apply(genotypes, encoding = c(0, 1, 2))
mono_indices <- which(maf ==0)
if(length(mono_indices)!=0){
genotypes = genotypes[,-mono_indices]
}
if(Sparse==TRUE){
X=as.matrix(genotypes)
X=apply(genotypes,2,as.numeric)
#sum(rowSums(is.na(X)))
XS<-scale(X,center=TRUE,scale=TRUE)
#sum(rowSums(is.na(XS)))
library(caret)
nzv <- nearZeroVar(XS)
XSZV <- XS[, -nzv]
#sum(rowSums(is.na(XSZV)))
X=XSZV
K=Sparse_Kernel_Construction(m=m,X=X,name=Kernel, degree=degree,nL=nL)
}else{
X=as.matrix(genotypes)
X=apply(genotypes,2,as.numeric)
#sum(rowSums(is.na(X)))
XS<-scale(X,center=TRUE,scale=TRUE)
#sum(rowSums(is.na(XS)))
library(caret)
nzv <- nearZeroVar(XS)
XSZV <- XS[, -nzv]
#sum(rowSums(is.na(XSZV)))
X=XSZV
K=Kernel_computation(X=X,name=Kernel,degree=degree, nL=nL)
}
myGD_train <- K[fold_indices,]
myGD_test <- K[-fold_indices,]
}
myGD_train2=as.matrix(sapply(myGD_train, as.numeric))
myGD_test1=as.matrix(sapply(myGD_test, as.numeric))
#glmnet.control(mxitnr = 50)
if(fam=="poisson"){
A1_RR=glmnetUtils::cv.glmnet(myGD_train2, myY_train, family = poisson(),
alpha=1,type.measure="mse", standardize = FALSE,
intercept = FALSE)
}
if(fam=="quasipoisson"){
A1_RR=glmnetUtils::cv.glmnet(myGD_train2, myY_train, family = quasipoisson(),
alpha=1,type.measure="mse", standardize = FALSE,
intercept = FALSE)
}
if(fam=="negative.binomial"){
A1_RR=glmnetUtils::cv.glmnet(myGD_train2, myY_train, family = negative.binomial(theta = 5),
alpha=1,type.measure="mse", standardize = FALSE,
intercept = FALSE)
}
predictions= as.numeric(predict(A1_RR,newx=myGD_test1,s='lambda.min',type='response'))
acc <- cor(predictions, myY_test, use = "pairwise.complete")
sacc <- cor(predictions, myY_test, use = "pairwise.complete", method = c("spearman"))
metrics=postResample(pred=predictions,obs=myY_test)
results=c(ACC=acc,SACC=sacc,metrics)
prediction=data.frame(Fold=rep(i,length(phenotype[-fold_indices,1])),phenotype[-fold_indices,],GEBV=predictions)
Predictions<-prediction
BGLR_acc_results[[i]] <- list(results)
Predictions_ALL=rbind(Predictions_ALL,Predictions)
}
model_vect <- c("Pearson","Spearman","RMSE","R2","MAE")
BGLR_acc_table <- data.frame(matrix(nrow = 0, ncol = 3))
for (i in 1:length(BGLR_acc_results))
{
results_long <- data.frame(rep(i, length(model_vect)), model_vect, unlist(BGLR_acc_results[[i]]))
BGLR_acc_table <- rbind(BGLR_acc_table, results_long)
}
names(BGLR_acc_table) <- c("fold", "model", "r")
data_wide <- spread(BGLR_acc_table, model, r)
acc_fold=data.frame(data_wide)
results=colMeans(acc_fold[2:6], na.rm=TRUE)
results_ALL=list(Results=results,Predictions=Predictions_ALL)
return(results_ALL)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.