MAS_GAGS_CV <- function(genotypes, phenotype,Y=NULL,GM=NULL,GD=NULL,PCA=NULL,GWAS="BLINK",alpha=0.05,threshold=NULL, folds = 5,QTN=10,markers=NULL,PCA.total=3,transformation=NULL)
{
# Make the CV list
fold_list <- make_CV_sets(length(phenotype[,2]), k = folds)
BGLR_acc_results <- list()
BGLR_acc_predictions<- list()
Predictions_ALL<-list()
for (i in 1:length(fold_list)){
fold_indices <- which(fold_list[[i]])
# Split into training and testing data
# Calculate the GS model using rrBLUP
myGD_train <- as.matrix(genotypes[fold_indices,])
myGD_train=apply(myGD_train,2,function(x) recode(x,"0"="-1","1"="0","2"="1"))
myGD_train=apply(myGD_train,2,as.numeric)
myGD_test <- as.matrix(genotypes[-fold_indices,])
myGD_test=apply(myGD_test,2,function(x) recode(x,"0"="-1","1"="0","2"="1"))
myGD_test=apply(myGD_test,2,as.numeric)
if(!is.null(markers)){
samp=sample(2:ncol(GD), markers)
m_samp=GD[,samp]
myGD_train <- m_samp[fold_indices,]
myGD_test <- m_samp[-fold_indices,]
}else{
myGD_train <- GD[fold_indices,]
myGD_test <- GD[-fold_indices,]
}
if(transformation=="sqrt"){
phenotype[,2]=replace(phenotype[,2], phenotype[,2] < 0, 0)
phenotype[-fold_indices,2] <-sqrt(phenotype[-fold_indices,2])
phenotype[fold_indices,2] <-sqrt(phenotype[fold_indices,2])
myY_train <- phenotype[fold_indices,2]
myY_test <- phenotype[-fold_indices,2]
Y[,2]=replace(Y[,2], Y[,2] < 0, 0)
Y_train <-Y[fold_indices,c(1,2)]
Y_test <-Y[-fold_indices,c(1,2)]
Y_train[,2] <-sqrt(Y_train[,2])
Y_test[,2] <-sqrt(Y_train[,2])
pheno_train <- phenotype[,2]
pheno_train[-fold_indices] <- NA
}
if(transformation=="log"){
phenotype[,2]=replace(phenotype[,2], phenotype[,2] <= 0, 0.000001)
phenotype[-fold_indices,2] <-log(phenotype[-fold_indices,2])
phenotype[fold_indices,2] <-log(phenotype[fold_indices,2])
myY_train <- phenotype[fold_indices,2]
myY_test <- phenotype[-fold_indices,2]
Y[,2]=replace(Y[,2], Y[,2] <= 0, 0.000001)
Y_train <-Y[fold_indices,c(1,2)]
Y_test <-Y[-fold_indices,c(1,2)]
Y_train[,2] <-log(Y_train[,2])
Y_test[,2] <-log(Y_train[,2])
pheno_train <- phenotype[,2]
pheno_train[-fold_indices] <- NA
}
if(transformation=="boxcox"){
phenotype[-fold_indices,2] <-boxcox_t(phenotype[-fold_indices,2])
phenotype[fold_indices,2] <-boxcox_t(phenotype[fold_indices,2])
myY_train <- phenotype[fold_indices,2]
myY_test <- phenotype[-fold_indices,2]
Y_train <-Y[fold_indices,c(1,2)]
Y_test <-Y[-fold_indices,c(1,2)]
Y_train[,2] <-boxcox_t(Y_train[,2])
Y_test[,2] <-boxcox_t(Y_train[,2])
pheno_train <- phenotype[,2]
pheno_train[-fold_indices] <- NA
}
if(transformation=="none"){
myY_train <- phenotype[fold_indices,2]
myY_test <- phenotype[-fold_indices,2]
Y_train <-Y[fold_indices,c(1,2)]
Y_test <-Y[-fold_indices,c(1,2)]
pheno_train <- phenotype[,2]
pheno_train[-fold_indices] <- NA
}
GWASR<- GAPIT(Y = Y_train,
GD = myGD_train,
GM = GM,
PCA.total=PCA.total,
model = GWAS,
file.output=F)
if(threshold=="Bonferonni"){
GWASSM <- which(GWASR$GWAS$P.value <= alpha/length(GWASR$GWAS$P.value))
if(length(GWASSM)==0){
acc <- NA
sacc <- NA
metrics=c(RMSE=NA,Rsquared=NA,MAE=NA)
results=c(ACC=acc,SACC=sacc,metrics)
prediction=data.frame(Fold=rep(i,length(phenotype[-fold_indices,1])),phenotype[-fold_indices,],GEBV=NA)
Predictions<-prediction
BGLR_acc_results[[i]] <- list(results)
Predictions_ALL=rbind(Predictions_ALL,Predictions)
}else{
sm=as.character(GWASR$GWAS[GWASSM,]$SNP)
CV <- genotypes[,GWASSM]
MAS_train <- data.frame(CV)
MAS_test <- data.frame(CV)
if(!is.null(PCA)){
myPCA_train <- PCA
myPCA_test <- PCA
MAS_train_PC <- data.frame(cbind(MAS_train,myPCA_train))
MAS_test_PC <- data.frame(cbind(MAS_test,myPCA_test))
GLM_data_PC <- data.frame(pheno_train, MAS_train_PC)
names(GLM_data_PC)[1] <- "Y"
#Linear model to calculate effects
#You can run all signficant markers at once to see cumulative effect
MAS_model_PC <- lm(Y ~ ., data = GLM_data_PC)
predictions <- predict(MAS_model_PC, MAS_test_PC)
acc <- cor(predictions[-fold_indices], myY_test, use = "pairwise.complete")
sacc <- cor(predictions[-fold_indices], myY_test, use = "pairwise.complete", method = c("spearman"))
metrics=postResample(pred=predictions[-fold_indices],obs=myY_test)
results=c(ACC=acc,SACC=sacc,metrics)
prediction=data.frame(Fold=rep(i,length(phenotype[-fold_indices,1])),phenotype[-fold_indices,],GEBV=predictions[-fold_indices])
}else{
GLM_data <- data.frame(pheno_train, MAS_train)
names(GLM_data)[1] <- "Y"
#Linear model to calculate effects
#You can run all signficant markers at once to see cumulative effect
MAS_model <- lm(Y ~ ., data = GLM_data)
predictions <- predict(MAS_model, MAS_test)
acc <- cor(predictions[-fold_indices], myY_test, use = "pairwise.complete")
sacc <- cor(predictions[-fold_indices], myY_test, use = "pairwise.complete", method = c("spearman"))
metrics=postResample(pred=predictions[-fold_indices],obs=myY_test)
results=c(ACC=acc,SACC=sacc,metrics)
prediction=data.frame(Fold=rep(i,length(phenotype[-fold_indices,1])),phenotype[-fold_indices,],GEBV=predictions[-fold_indices])
}
Predictions<-prediction
BGLR_acc_results[[i]] <- list(results)
Predictions_ALL=rbind(Predictions_ALL,Predictions)
}
}else{
top10=GWASR$GWAS[order(GWASR$GWAS$P.value),]
GWASSM=top10[1:QTN,]$SNP
CV <- genotypes[,GWASSM]
MAS_train <- data.frame(CV)
MAS_test <- data.frame(CV)
if(!is.null(PCA)){
myPCA_train <- PCA
myPCA_test <- PCA
MAS_train_PC <- data.frame(cbind(MAS_train,myPCA_train))
MAS_test_PC <- data.frame(cbind(MAS_test,myPCA_test))
GLM_data_PC <- data.frame(pheno_train, MAS_train_PC)
names(GLM_data_PC)[1] <- "Y"
#Linear model to calculate effects
#You can run all signficant markers at once to see cumulative effect
MAS_model_PC <- lm(Y ~ ., data = GLM_data_PC)
predictions <- predict(MAS_model_PC, MAS_test_PC)
acc <- cor(predictions[-fold_indices], myY_test, use = "pairwise.complete")
sacc <- cor(predictions[-fold_indices], myY_test, use = "pairwise.complete", method = c("spearman"))
metrics=postResample(pred=predictions[-fold_indices],obs=myY_test)
results=c(ACC=acc,SACC=sacc,metrics)
prediction=data.frame(Fold=rep(i,length(phenotype[-fold_indices,1])),phenotype[-fold_indices,],GEBV=predictions[-fold_indices])
}else{
GLM_data <- data.frame(pheno_train, MAS_train)
names(GLM_data)[1] <- "Y"
#Linear model to calculate effects
#You can run all signficant markers at once to see cumulative effect
MAS_model <- lm(Y ~ ., data = GLM_data)
predictions <- predict(MAS_model, MAS_test)
acc <- cor(predictions[-fold_indices], myY_test, use = "pairwise.complete")
sacc <- cor(predictions[-fold_indices], myY_test, use = "pairwise.complete", method = c("spearman"))
metrics=postResample(pred=predictions[-fold_indices],obs=myY_test)
results=c(ACC=acc,SACC=sacc,metrics)
prediction=data.frame(Fold=rep(i,length(phenotype[-fold_indices,1])),phenotype[-fold_indices,],GEBV=predictions[-fold_indices])
}
Predictions<-prediction
BGLR_acc_results[[i]] <- list(results)
Predictions_ALL=rbind(Predictions_ALL,Predictions)
}
}
model_vect <- c("Pearson","Spearman","RMSE","R2","MAE")
BGLR_acc_table <- data.frame(matrix(nrow = 0, ncol = 3))
for (i in 1:length(BGLR_acc_results))
{
results_long <- data.frame(rep(i, length(model_vect)), model_vect, unlist(BGLR_acc_results[[i]]))
BGLR_acc_table <- rbind(BGLR_acc_table, results_long)
}
names(BGLR_acc_table) <- c("fold", "model", "r")
data_wide <- spread(BGLR_acc_table, model, r)
acc_fold=data.frame(data_wide)
results=colMeans(acc_fold[2:6], na.rm=TRUE)
results_ALL=list(Results=results,Predictions=Predictions_ALL)
return(results_ALL)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.