rrBLUP_GAGS_CV <- function(genotypes, phenotype,Kernel="Markers",Y=NULL,GM=NULL,GD=NULL,PCA=NULL,CV=NULL,GWAS="BLINK",alpha=0.05,threshold=NULL, markers=NULL, folds = 5,Sparse=FALSE,m=NULL,degree=NULL, nL=NULL,QTN=10,PCA.total=3,transformation=NULL)
{
# Make the CV list
fold_list <- make_CV_sets(length(phenotype[,2]), k = folds)
BGLR_acc_results <- list()
BGLR_acc_predictions<- list()
Predictions_ALL<-list()
for (i in 1:length(fold_list)){
fold_indices <- which(fold_list[[i]])
if(Kernel=="Markers"){
if(!is.null(markers)){
samp=sample(1:ncol(genotypes), markers)
m_samp=genotypes[,samp]
myGD_train <- m_samp[fold_indices,]
myGD_test <- m_samp[-fold_indices,]
}else{
myGD_train <- genotypes[fold_indices,]
myGD_test <- genotypes[-fold_indices,]
}
# Calculate the GS model using rrBLUP
myGD_train=apply(myGD_train,2,function(x) recode(x,"0"="-1","1"="0","2"="1"))
myGD_train=apply(myGD_train,2,as.numeric)
myGD_test=apply(myGD_test,2,function(x) recode(x,"0"="-1","1"="0","2"="1"))
myGD_test=apply(myGD_test,2,as.numeric)
}else{
maf <- calc_maf_apply(genotypes, encoding = c(0, 1, 2))
mono_indices <- which(maf ==0)
if(length(mono_indices)!=0){
genotypes = genotypes[,-mono_indices]
}
if(Sparse==TRUE){
X=as.matrix(genotypes)
X=apply(genotypes,2,as.numeric)
#sum(rowSums(is.na(X)))
XS<-scale(X,center=TRUE,scale=TRUE)
#sum(rowSums(is.na(XS)))
library(caret)
nzv <- nearZeroVar(XS)
XSZV <- XS[, -nzv]
#sum(rowSums(is.na(XSZV)))
X=XSZV
K=Sparse_Kernel_Construction(m=m,X=X,name=Kernel, degree=degree,nL=nL)
}else{
X=as.matrix(genotypes)
X=apply(genotypes,2,as.numeric)
#sum(rowSums(is.na(X)))
XS<-scale(X,center=TRUE,scale=TRUE)
#sum(rowSums(is.na(XS)))
library(caret)
nzv <- nearZeroVar(XS)
XSZV <- XS[, -nzv]
#sum(rowSums(is.na(XSZV)))
X=XSZV
K=Kernel_computation(X=X,name=Kernel,degree=degree, nL=nL)
}
}
if(!is.null(markers)){
samp=sample(2:ncol(GD), markers)
m_samp=GD[,samp]
train_GM<-train_GM[samp,]
train_GD <- m_samp[fold_indices,]
#myGD_test <- m_samp[-fold_indices,]
}else{
train_GD <- GD[fold_indices,]
train_GM<-GM
#myGD_test <- GD[-fold_indices,]
}
if(transformation=="sqrt"){
phenotype[,2]=replace(phenotype[,2], phenotype[,2] < 0, 0)
phenotype[-fold_indices,2] <-sqrt(phenotype[-fold_indices,2])
phenotype[fold_indices,2] <-sqrt(phenotype[fold_indices,2])
myY_train <- phenotype[fold_indices,2]
myY_test <- phenotype[-fold_indices,2]
Y[,2]=replace(Y[,2], Y[,2] < 0, 0)
Y_train <-Y[fold_indices,c(1,2)]
Y_test <-Y[-fold_indices,c(1,2)]
Y_train[,2] <-sqrt(Y_train[,2])
Y_test[,2] <-sqrt(Y_train[,2])
pheno_train <- phenotype[,2]
pheno_train[-fold_indices] <- NA
}
if(transformation=="log"){
phenotype[,2]=replace(phenotype[,2], phenotype[,2] <= 0, 0.000001)
phenotype[-fold_indices,2] <-log(phenotype[-fold_indices,2])
phenotype[fold_indices,2] <-log(phenotype[fold_indices,2])
myY_train <- phenotype[fold_indices,2]
myY_test <- phenotype[-fold_indices,2]
Y[,2]=replace(Y[,2], Y[,2] <= 0, 0.000001)
Y_train <-Y[fold_indices,c(1,2)]
Y_test <-Y[-fold_indices,c(1,2)]
Y_train[,2] <-log(Y_train[,2])
Y_test[,2] <-log(Y_train[,2])
pheno_train <- phenotype[,2]
pheno_train[-fold_indices] <- NA
}
if(transformation=="boxcox"){
phenotype[-fold_indices,2] <-boxcox_t(phenotype[-fold_indices,2])
phenotype[fold_indices,2] <-boxcox_t(phenotype[fold_indices,2])
myY_train <- phenotype[fold_indices,2]
myY_test <- phenotype[-fold_indices,2]
Y_train <-Y[fold_indices,c(1,2)]
Y_test <-Y[-fold_indices,c(1,2)]
Y_train[,2] <-boxcox_t(Y_train[,2])
Y_test[,2] <-boxcox_t(Y_train[,2])
pheno_train <- phenotype[,2]
pheno_train[-fold_indices] <- NA
}
if(transformation=="none"){
myY_train <- phenotype[fold_indices,2]
myY_test <- phenotype[-fold_indices,2]
Y_train <-Y[fold_indices,c(1,2)]
Y_test <-Y[-fold_indices,c(1,2)]
pheno_train <- phenotype[,2]
pheno_train[-fold_indices] <- NA
}
GWASR<- GAPIT(Y = Y_train,
GD = train_GD,
GM = train_GM,
PCA.total=PCA.total,
model = GWAS,
file.output=F)
if(threshold=="Bonferonni"){
GWASSM <- which(GWASR$GWAS$P.value <= alpha/length(GWASR$GWAS$P.value))
if(length(GWASSM)==0){
acc <- NA
sacc <- NA
metrics=c(RMSE=NA,Rsquared=NA,MAE=NA)
results=c(ACC=acc,SACC=sacc,metrics)
prediction=data.frame(Fold=rep(i,length(phenotype[-fold_indices,1])),phenotype[-fold_indices,],GEBV=NA,RE=NA,FE=NA)
Predictions<-prediction
BGLR_acc_results[[i]] <- list(results)
Predictions_ALL=rbind(Predictions_ALL,Predictions)
}else{
sm=as.character(GWASR$GWAS[GWASSM,]$SNP)
myCV_train <- myGD_train[,sm]
myCV_test <- myGD_test[,sm]
myCV<-as.matrix(genotypes[,sm])
if(!is.null(PCA)){
myPCA_train <- PCA[fold_indices,]
myPCA_test <- PCA[-fold_indices,]
}
if(!is.null(PCA)){
if(Kernel=="Markers"){
fix_train_PC <- as.matrix(cbind(myCV_train,myPCA_train))
fix_test_PC <- as.matrix(cbind(myCV_test,myPCA_test))
#fix_PC=as.matrix(cbind(myCV,PCA))
#p <- ncol(fix_train_PC)
#XtX <- crossprod(fix_train_PC, fix_train_PC)
#rank.X <- qr(XtX)$rank
#if (rank.X < p) {
#sm2=findLinearCombos(fix_train_PC)$remove
#fix_train_PC=fix_train_PC[,-sm2]
#fix_test_PC=fix_test_PC[,-sm2]}
fix_train_PC=make_full_rank(fix_train_PC)
fix_test_PC=fix_test_PC[,colnames(fix_train_PC)]
if(ncol(data.frame(fix_test_PC))==1){
fix_test_PC=matrix(fix_test_PC)
}
rrBLUP_model_PC <- mixed.solve(y = myY_train,
Z = myGD_train,
X = fix_train_PC)
pred_effects_PC <- myGD_test %*% rrBLUP_model_PC$u
fix_effects_PC <- fix_test_PC %*% rrBLUP_model_PC$beta
predictions <- c(pred_effects_PC) + c(fix_effects_PC)
}else{
fix_PC=as.matrix(cbind(myCV,PCA))
#p <- ncol(fix_PC)
#XtX <- crossprod(fix_PC, fix_PC)
#rank.X <- qr(XtX)$rank
#if (rank.X < p) {
#sm2=findLinearCombos(fix_PC)$remove
#fix_PC=fix_PC[,-sm2]}
fix_PC=make_full_rank(fix_PC)
gBLUP_model <- mixed.solve(y = pheno_train,
K = K,
X=fix_PC)
pred_effects_PC <- gBLUP_model$u[-fold_indices]
fix_effects_PC <- as.matrix(fix_PC[-fold_indices,]) %*% gBLUP_model$beta
predictions <- c(pred_effects_PC) + c(fix_effects_PC)
}
acc <- cor(predictions, myY_test, use = "pairwise.complete")
sacc <- cor(predictions, myY_test, use = "pairwise.complete", method = c("spearman"))
metrics=postResample(pred=predictions,obs=myY_test)
results=c(ACC=acc,SACC=sacc,metrics)
prediction=data.frame(Fold=rep(i,length(phenotype[-fold_indices,1])),phenotype[-fold_indices,],GEBV=predictions,RE=pred_effects,FE=fix_effects)
}else{
if(Kernel=="Markers"){
fix_train <- as.matrix(myCV_train)
fix_test <- as.matrix(myCV_test)
#p <- ncol(fix_train)
#XtX <- crossprod(fix_train, fix_train)
#rank.X <- qr(XtX)$rank
#if (rank.X < p) {
#sm2=findLinearCombos(fix_train)$remove
#fix_train=fix_train[,-sm2]
#fix_test=fix_test[,-sm2]}
#fix_myCV <- as.matrix(myCV)
#p <- ncol(fix_myCV)
#XtX <- crossprod(fix_myCV, fix_myCV)
#rank.X <- qr(XtX)$rank
#if (rank.X < p) {
#sm2=findLinearCombos(fix_myCV)$remove
#myCV=myCV[,-sm2]}
fix_train=make_full_rank(fix_train)
fix_test=fix_test[,colnames(fix_train)]
if(ncol(data.frame(fix_test))==1){
fix_test=matrix(fix_test)
}
rrBLUP_model <- mixed.solve(y = myY_train,
Z = myGD_train,
X = fix_train)
pred_effects <- myGD_test %*% rrBLUP_model$u
fix_effects <- fix_test %*% rrBLUP_model$beta
predictions <- c(pred_effects) + c(fix_effects)
}else{
fix_myCV <- as.matrix(myCV)
fix_myCV=make_full_rank(fix_myCV)
gBLUP_model <- mixed.solve(y = pheno_train,
K = K,
X=fix_myCV)
pred_effects <- gBLUP_model$u[-fold_indices]
fix_effects <- as.matrix(fix_myCV[-fold_indices,]) %*% gBLUP_model$beta
predictions <- c(pred_effects) + c(fix_effects)
}
acc <- cor(predictions, myY_test, use = "pairwise.complete")
sacc <- cor(predictions, myY_test, use = "pairwise.complete", method = c("spearman"))
metrics=postResample(pred=predictions,obs=myY_test)
results=c(ACC=acc,SACC=sacc,metrics)
prediction=data.frame(Fold=rep(i,length(phenotype[-fold_indices,1])),phenotype[-fold_indices,],GEBV=predictions,RE=pred_effects,FE=fix_effects)
}
Predictions<-prediction
BGLR_acc_results[[i]] <- list(results)
Predictions_ALL=rbind(Predictions_ALL,Predictions)
}
}else{
top10=GWASR$GWAS[order(GWASR$GWAS$P.value),]
GWASSM=top10[1:QTN,]$SNP
myCV_train <- myGD_train[,GWASSM]
myCV_test <- myGD_test[,GWASSM]
myCV<-as.matrix(genotypes[,GWASSM])
if(!is.null(PCA)){
gc()
if(Kernel=="Markers"){
myPCA_train <- PCA[fold_indices,]
myPCA_test <- PCA[-fold_indices,]
fix_train_PC <- as.matrix(cbind(myCV_train,myPCA_train))
fix_test_PC <- as.matrix(cbind(myCV_test,myPCA_test))
#fix_PC=as.matrix(cbind(myCV,PCA))
#p <- ncol(fix_train_PC)
#XtX <- crossprod(fix_train_PC, fix_train_PC)
#rank.X <- qr(XtX)$rank
#if (rank.X < p) {
#sm2=findLinearCombos(fix_train_PC)$remove
#fix_train_PC=fix_train_PC[,-sm2]
#fix_test_PC=fix_test_PC[,-sm2]}
fix_train_PC=make_full_rank(fix_train_PC)
fix_test_PC=fix_test_PC[,colnames(fix_train_PC)]
if(ncol(data.frame(fix_test_PC))==1){
fix_test_PC=matrix(fix_test_PC)
}
rrBLUP_model_PC <- mixed.solve(y = myY_train,
Z = myGD_train,
X = fix_train_PC)
pred_effects_PC <- myGD_test %*% rrBLUP_model_PC$u
fix_effects_PC <- fix_test_PC %*% rrBLUP_model_PC$beta
predictions <- c(pred_effects_PC) + c(fix_effects_PC)
}else{
fix_PC=as.matrix(cbind(myCV,PCA))
#p <- ncol(fix_PC)
#XtX <- crossprod(fix_PC, fix_PC)
#rank.X <- qr(XtX)$rank
#if (rank.X < p) {
#sm2=findLinearCombos(fix_PC)$remove
#fix_PC=fix_PC[,-sm2]}
fix_PC=make_full_rank(fix_PC)
gBLUP_model <- mixed.solve(y = pheno_train,
K = K,
X=fix_PC)
pred_effects <- gBLUP_model$u[-fold_indices]
fix_effects <- as.matrix(fix_PC[-fold_indices,]) %*% gBLUP_model$beta
predictions <- c(pred_effects) + c(fix_effects)
}
acc <- cor(predictions, myY_test, use = "pairwise.complete")
sacc <- cor(predictions, myY_test, use = "pairwise.complete", method = c("spearman"))
metrics=postResample(pred=predictions,obs=myY_test)
results=c(ACC=acc,SACC=sacc,metrics)
prediction=data.frame(Fold=rep(i,length(phenotype[-fold_indices,1])),phenotype[-fold_indices,],GEBV=predictions,RE=pred_effects,FE=fix_effects)
}else{
if(Kernel=="Markers"){
fix_train <- as.matrix(myCV_train)
fix_test <- as.matrix(myCV_test)
#p <- ncol(fix_train)
#XtX <- crossprod(fix_train, fix_train)
#rank.X <- qr(XtX)$rank
#if (rank.X < p) {
#sm2=findLinearCombos(fix_train)$remove
#fix_train=fix_train[,-sm2]
#fix_test=fix_test[,-sm2]}
fix_train=make_full_rank(fix_train)
fix_test=fix_test[,colnames(fix_train)]
if(ncol(data.frame(fix_test))==1){
fix_test=matrix(fix_test)
}
#myCV_fix <- as.matrix(myCV)
#p <- ncol(myCV_fix)
#XtX <- crossprod(myCV_fix, myCV_fix)
#rank.X <- qr(XtX)$rank
#if (rank.X < p) {
#sm2=findLinearCombos(myCV_fix)$remove
#myCV=myCV[,-sm2]}
rrBLUP_model <- mixed.solve(y = myY_train,
Z = myGD_train,
X = fix_train)
pred_effects <- myGD_test %*% rrBLUP_model$u
fix_effects <- fix_test %*% rrBLUP_model$beta
predictions <- c(pred_effects) + c(fix_effects)
}else{
myCV_fix <- as.matrix(myCV)
myCV_fix=make_full_rank(myCV_fix)
gBLUP_model <- mixed.solve(y = pheno_train,
K = K,
X=myCV_fix)
pred_effects <- gBLUP_model$u[-fold_indices]
fix_effects <- as.matrix(myCV_fix[-fold_indices,]) %*% gBLUP_model$beta
predictions <- c(pred_effects) + c(fix_effects)
}
acc <- cor(predictions, myY_test, use = "pairwise.complete")
sacc <- cor(predictions, myY_test, use = "pairwise.complete", method = c("spearman"))
metrics=postResample(pred=predictions,obs=myY_test)
results=c(ACC=acc,SACC=sacc,metrics)
prediction=data.frame(Fold=rep(i,length(phenotype[-fold_indices,1])),phenotype[-fold_indices,],GEBV=predictions,RE=pred_effects,FE=fix_effects)
}
Predictions<-prediction
BGLR_acc_results[[i]] <- list(results)
Predictions_ALL=rbind(Predictions_ALL,Predictions)
}
}
model_vect <- c("Pearson","Spearman","RMSE","R2","MAE")
BGLR_acc_table <- data.frame(matrix(nrow = 0, ncol = 3))
for (i in 1:length(BGLR_acc_results))
{
results_long <- data.frame(rep(i, length(model_vect)), model_vect, unlist(BGLR_acc_results[[i]]))
BGLR_acc_table <- rbind(BGLR_acc_table, results_long)
}
names(BGLR_acc_table) <- c("fold", "model", "r")
data_wide <- spread(BGLR_acc_table, model, r)
acc_fold=data.frame(data_wide)
results=colMeans(acc_fold[2:6], na.rm=TRUE)
results_ALL=list(Results=results,Predictions=Predictions_ALL)
return(results_ALL)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.