# Automatically generated by openapi-generator (https://openapi-generator.tech)
# Please update as you see appropriate
context("Test Metadata")
model.instance <- Metadata$new()
ref.json <- '{
"prefix" : "MTD",
"mzTab-version" : "2.0.0-M",
"mzTab-ID" : "ISAS-2018-1234",
"title" : null,
"description" : "Minimal proposed sample file for identification and quantification of lipids",
"contact" : null,
"publication" : [ {
"id" : 1,
"publicationItems" : [ {
"type" : "pubmed",
"accession" : "29039908"
}, {
"type" : "doi",
"accession" : "10.1021/acs.analchem.7b03576"
} ]
} ],
"uri" : null,
"external_study_uri" : [ {
"id" : 1,
"value" : "file:///C:/data/prm.sky.zip"
} ],
"instrument" : [ {
"id" : 1,
"name" : {
"id" : null,
"cv_label" : "MS",
"cv_accession" : "MS:1001911",
"name" : "Q Exactive",
"value" : null
},
"source" : {
"id" : null,
"cv_label" : "MS",
"cv_accession" : "MS:1000073",
"name" : "electrospray ionization",
"value" : null
},
"analyzer" : [ {
"id" : null,
"cv_label" : "MS",
"cv_accession" : "MS:1000081",
"name" : "quadrupole",
"value" : null
}, {
"id" : null,
"cv_label" : "MS",
"cv_accession" : "MS:1000484",
"name" : "orbitrap",
"value" : null
} ],
"detector" : {
"id" : null,
"cv_label" : "MS",
"cv_accession" : "MS:1000624",
"name" : "inductive detector",
"value" : null
}
} ],
"quantification_method" : {
"id" : null,
"cv_label" : "MS",
"cv_accession" : "MS:1001838",
"name" : "SRM quantitation analysis",
"value" : null
},
"sample" : [ {
"id" : 1,
"name" : "QEx-1273-prm-sp1",
"custom" : null,
"species" : null,
"tissue" : null,
"cell_type" : null,
"disease" : null,
"description" : "Sphingolipids with concentration reported as picomolar per mg of protein, abundances are reported after calibration correction."
} ],
"sample_processing" : [ {
"id" : 1,
"sampleProcessing" : [ {
"id" : null,
"cv_label" : "MSIO",
"cv_accession" : "MSIO:0000148",
"name" : "high performance liquid chromatography",
"value" : null
} ]
} ],
"software" : [ {
"id" : 1,
"parameter" : {
"id" : null,
"cv_label" : "MS",
"cv_accession" : "MS:1000532",
"name" : "Xcalibur",
"value" : "2.8-280502/2.8.1.2806"
},
"setting" : [ "ScheduledSRMWindow: 2 min", "CycleTime: 2 s" ]
}, {
"id" : 2,
"parameter" : {
"id" : null,
"cv_label" : "MS",
"cv_accession" : "MS:1000922",
"name" : "Skyline",
"value" : "3.5.0.9319"
},
"setting" : [ "MSMSmassrange: (50.0, 1800.0)" ]
} ],
"derivatization_agent" : null,
"ms_run" : [ {
"id" : 1,
"name" : null,
"location" : "file:///C:/data/QEx-1273-prm-sp1.mzML",
"instrument_ref" : 1,
"format" : {
"id" : null,
"cv_label" : "MS",
"cv_accession" : "MS:1000584",
"name" : "mzML file",
"value" : null
},
"id_format" : {
"id" : null,
"cv_label" : "MS",
"cv_accession" : "MS:1000768",
"name" : "Thermo nativeID format",
"value" : null
},
"fragmentation_method" : null,
"scan_polarity" : [ {
"id" : null,
"cv_label" : "MS",
"cv_accession" : "MS:1000130",
"name" : "positive scan",
"value" : null
} ],
"hash" : null,
"hash_method" : null
} ],
"assay" : [ {
"id" : 1,
"name" : "Description of assay 1",
"custom" : null,
"external_uri" : null,
"sample_ref" : 1,
"ms_run_ref" : [ 1 ]
} ],
"study_variable" : [ {
"id" : 1,
"name" : "Sphingolipid SRM Quantitation",
"assay_refs" : [ 1 ],
"average_function" : {
"id" : null,
"cv_label" : "MS",
"cv_accession" : "MS:1002883",
"name" : "median",
"value" : null
},
"variation_function" : {
"id" : null,
"cv_label" : "MS",
"cv_accession" : "MS:1002885",
"name" : "standard error",
"value" : null
},
"description" : "sphingolipid srm quantitation",
"factors" : null
} ],
"custom" : null,
"cv" : [ {
"id" : 1,
"label" : "MS",
"full_name" : "PSI-MS controlled vocabulary",
"version" : "4.0.18",
"uri" : "https://github.com/HUPO-PSI/psi-ms-CV/blob/master/psi-ms.obo"
}, {
"id" : 2,
"label" : "MSIO",
"full_name" : "Metabolomics Standards Initiative Ontology (MSIO)",
"version" : "1.0.1",
"uri" : "https://www.ebi.ac.uk/ols/ontologies/msio"
}, {
"id" : 3,
"label" : "UO",
"full_name" : "Units of Measurement Ontology",
"version" : "2017-09-25",
"uri" : "http://purl.obolibrary.org/obo/uo.owl"
} ],
"small_molecule-quantification_unit" : {
"id" : null,
"cv_label" : "UO",
"cv_accession" : "UO:0000072",
"name" : "picomolal",
"value" : null
},
"small_molecule_feature-quantification_unit" : {
"id" : null,
"cv_label" : "UO",
"cv_accession" : "UO:0000072",
"name" : "picomolal",
"value" : null
},
"small_molecule-identification_reliability" : {
"id" : null,
"cv_label" : "MS",
"cv_accession" : "MS:1002896",
"name" : "compound identification confidence level",
"value" : null
},
"database" : [ {
"id" : 1,
"param" : {
"id" : null,
"cv_label" : "",
"cv_accession" : "",
"name" : "Pubchem",
"value" : null
},
"prefix" : "PUBCHEM-CPD",
"version" : "02.12.2017",
"uri" : "https://www.ncbi.nlm.nih.gov/pccompound"
}, {
"id" : 2,
"param" : {
"id" : null,
"cv_label" : "",
"cv_accession" : "",
"name" : "LipidMaps",
"value" : null
},
"prefix" : "LM",
"version" : "2017-12",
"uri" : "http://www.lipidmaps.org/"
}, {
"id" : 3,
"param" : {
"id" : null,
"cv_label" : "",
"cv_accession" : "",
"name" : "LipidCreator Transitions",
"value" : null
},
"prefix" : "LCTR",
"version" : "2018-07",
"uri" : "https://lifs.isas.de/lipidcreator"
} ],
"id_confidence_measure" : [ {
"id" : 1,
"cv_label" : "MS",
"cv_accession" : "MS:1002890",
"name" : "fragmentation score",
"value" : null
} ],
"colunit-small_molecule" : null,
"colunit-small_molecule_feature" : null,
"colunit-small_molecule_evidence" : [ {
"column_name" : "opt_global_mass_error",
"param" : {
"id" : null,
"cv_label" : "UO",
"cv_accession" : "UO:0000169",
"name" : "parts per million",
"value" : null
}
} ]
}'
test_that("metadata", {
model.instance <- model.instance$fromJSONString(ref.json)
# expect_equal(model.instance$`id`, 1)
# expect_equal(model.instance$`name`, "Sphingolipid SRM Quantitation")
# expect_equal(length(model.instance$`assay_refs`), 1)
# expect_equal(model.instance$`assay_refs`[[1]], 1)
# expect_null(model.instance$`average_function`$id)
# expect_equal(model.instance$`average_function`$cv_label, "MS")
# expect_equal(model.instance$`average_function`$cv_accession, "MS:1002883")
# expect_equal(model.instance$`average_function`$name, "median")
# expect_null(model.instance$`average_function`$value)
# expect_null(model.instance$`variation_function`$id)
# expect_equal(model.instance$`variation_function`$cv_label, "MS")
# expect_equal(model.instance$`variation_function`$cv_accession, "MS:1002885")
# expect_equal(model.instance$`variation_function`$name, "standard error")
# expect_null(model.instance$`variation_function`$value)
# expect_equal(model.instance$`description`, "sphingolipid srm quantitation")
# expect_null(model.instance$`factors`)
})
test_that("metadata$toDataFrame works", {
model.instance <- model.instance$fromJSONString(ref.json)
df <- model.instance$toDataFrame()
# expect_equal(df[1,"PREFIX"], "MTD")
# expect_equal(df[1,"KEY"], "study_variable[1]-name")
# expect_equal(df[1,"VALUE"], "Sphingolipid SRM Quantitation")
# expect_equal(df[2,"KEY"], "study_variable[1]-assay_refs")
# expect_equal(df[2,"VALUE"], "assay[1]|assay[3]")
# expect_equal(df[3,"KEY"], "study_variable[1]-average_function")
# expect_equal(df[3,"VALUE"], "[MS, MS:1002883, median, ]")
# expect_equal(df[4,"KEY"], "study_variable[1]-variation_function")
# expect_equal(df[4,"VALUE"], "[MS, MS:1002885, standard error, ]")
# expect_equal(df[5,"KEY"], "study_variable[1]-description")
# expect_equal(df[5,"VALUE"], "sphingolipid srm quantitation")
})
test_that("metadata$fromDataFrame works", {
#model.instance <- model.instance$fromDataFrame(ref.json)
#df <- model.instance$toDataFrame()
# expect_equal(df[1,"PREFIX"], "MTD")
# expect_equal(df[1,"KEY"], "study_variable[1]-name")
# expect_equal(df[1,"VALUE"], "Sphingolipid SRM Quantitation")
# expect_equal(df[2,"KEY"], "study_variable[1]-assay_refs")
# expect_equal(df[2,"VALUE"], "assay[1]|assay[3]")
# expect_equal(df[3,"KEY"], "study_variable[1]-average_function")
# expect_equal(df[3,"VALUE"], "[MS, MS:1002883, median, ]")
# expect_equal(df[4,"KEY"], "study_variable[1]-variation_function")
# expect_equal(df[4,"VALUE"], "[MS, MS:1002885, standard error, ]")
# expect_equal(df[5,"KEY"], "study_variable[1]-description")
# expect_equal(df[5,"VALUE"], "sphingolipid srm quantitation")
})
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.