Description Usage Arguments Details Value See Also Examples
View source: R/Gaussian_PPL_src.R
Transform the output dataset from gen.data
to fit in coxme
for comparison.
1 2 |
data |
a list object from |
tocoxme
is designed for positively correlated two events, and tocoxme_n
is designed for negatively correlated two events.
time |
follow-up times |
delta |
event status |
joint |
indicator for the two event types |
b0,b1,b2 |
indicators of the three frailties, b0 is the shared one which accounts for the correlations, b1 and b2 are for the first and second event types |
Z1,Z2 |
covariates for the two event types |
Z0 |
Only in tocoxme_n, |
mi |
number of events within each cluster |
N |
number of clusters |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | # install coxme by:
# install.packages("coxme")
library(coxme)
set.seed(100)
N<-100 # number of clusters
beta1 <- c(0.5,-0.3,0.5) # regression parameters for event type 1
beta2 <- c(0.8,-0.2,0.3) # regression parameters for event type 2
beta <- c(beta1,beta2)
theta <- c(0.25,0.25,-0.125) # variance-covariance matrix for the bivariate frailty (denoted as D), it is a vector (D[1,1],D[2,2], D[1,2])
lambda01 <- 1
lambda02 <- 1
cen <- 10 # maximum censoring time
centype <- TRUE # fixed censoring time at cen
data <- gen.data(N,beta1,beta2,theta,lambda01,lambda02)
ptm<-proc.time()
res <- BivPPL(data,check.log.lik=TRUE) # check the convergence of the log-likelihood
proc.time() - ptm
res$beta_hat
res$beta_ASE
res$D_hat
data_coxme <- tocoxme(data) # assume that we do not know the two events are negatively associated and we transform the data to be positively associated
ptm<-proc.time()
res_coxme <- coxme(Surv(data_coxme$time,data_coxme$delta)~data_coxme$Z1+data_coxme$Z2+(1|data_coxme$b0)+(1|data_coxme$b1)+(1|data_coxme$b2)+strata(data_coxme$joint),eps=1e-6,list(reltol = 1e-5),sparse=c(1001,0.001),refine.n=0) # disable the Hessian matrix sparsening and likelihood refining
proc.time() - ptm
res_coxme$coefficients
sqrt(diag(vcov(res_coxme)))
assemble(as.vector(unlist(res_coxme$vcoef)))
data_coxme_n <- tocoxme_n(data) # assume that we know the two events are negatively associated
ptm<-proc.time()
res_coxme_n<- coxme(Surv(data_coxme_n$time,data_coxme_n$delta)~data_coxme_n$Z1+data_coxme_n$Z2+(data_coxme_n$Z0|data_coxme_n$b0)+(1|data_coxme_n$b1)+(1|data_coxme_n$b2)+strata(data_coxme_n$joint),eps=1e-6,list(reltol = 1e-5),sparse=c(1001,0.001),refine.n=0)
proc.time() - ptm
res_coxme_n$coefficients
sqrt(diag(vcov(res_coxme_n)))
assemble_n(as.vector(unlist(res_coxme_n$vcoef)))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.