Description Usage Arguments Value Examples
The function to apply multivariate quantile LISA statistics
1 2 3 4 5 6 7 8 | local_multiquantilelisa(
w,
quantile_data,
permutations = 999,
significance_cutoff = 0.05,
cpu_threads = 6,
seed = 123456789
)
|
w |
An instance of Weight object |
quantile_data |
A list of [k, q, data] for more than one variable. Each variable will be set with: k, indicates the number of quantiles; q, indicates which quantile or interval used in local join count statistics; data, is a numeric array of selected variable |
permutations |
The number of permutations for the LISA computation |
significance_cutoff |
A cutoff value for significance p-values to filter not-significant clusters |
cpu_threads |
The number of cpu threads used for parallel LISA computation |
seed |
The seed for random number generator |
lisa_obj An instance of LISA (LocalSpatialAutocorrelation) object
1 2 3 4 5 6 7 8 9 10 | guerry_path <- system.file("extdata", "Guerry.shp", package = "rgeoda")
guerry <- geoda_open(guerry_path)
queen_w <- queen_weights(guerry)
guerry_df <- as.data.frame(guerry) # use as data.frame
crm_prp <- guerry_df['Crm_prp'][,1]
lit <- guerry_df['Litercy'][,1]
quantiles <- list(list(4,1,crm_prp), list(4,1, lit))
lisa <- local_multiquantilelisa(queen_w, quantiles)
clsts <- lisa_clusters(lisa)
clsts
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.