maxp_tabu: A tabu-search algorithm to solve the max-p-region problem

Description Usage Arguments Value Examples

View source: R/clustering.R

Description

The max-p-region problem is a special case of constrained clustering where a finite number of geographical areas, n, are aggregated into the maximum number of regions, p, such that each region satisfies the following const raints: 1. The areas within a region must be geographically connected.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
maxp_tabu(
  w,
  data,
  bound_vals,
  min_bound,
  tabu_length = 10,
  conv_tabu = 10,
  iterations = 99,
  initial_regions = vector("numeric"),
  distance_method = "euclidean",
  random_seed = 123456789,
  cpu_threads = 6
)

Arguments

w

An instance of Weight class

data

A list of numeric vectors of selected variable

bound_vals

A numeric vector of selected bounding variable

min_bound

A minimum value that the sum value of bounding variable int each cluster should be greater than

tabu_length

(optional): The length of a tabu search heuristic of tabu algorithm. Defaults to 10.

conv_tabu

(optional): The number of non-improving moves. Defaults to 10.

iterations

(optional): The number of iterations of Tabu algorithm. Defaults to 99.

initial_regions

(optional): The initial regions that the local search starts with. Default is empty. means the local search starts with a random process to "grow" clusters

distance_method

(optional) The distance method used to compute the distance betwen observation i and j. Defaults to "euclidean". Options are "euclidean" and "manhattan"

random_seed

(optional) The seed for random number generator. Defaults to 123456789.

cpu_threads

(optional) The number of cpu threads used for parallel computation

Value

A list of numeric vectors represents a group of clusters

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
## Not run: 
guerry_path <- system.file("extdata", "Guerry.shp", package = "rgeoda")
guerry <- geoda_open(guerry_path)
queen_w <- queen_weights(guerry)
guerry_df <- as.data.frame(guerry) # use as data.frame
data <- guerry_df[c('Crm_prs','Crm_prp','Litercy','Donatns','Infants','Suicids')]
bound_vals <- guerry_df['Pop1831'][,1]
min_bound <- 3236.67 # 10% of Pop1831
maxp_clusters <- maxp_tabu(queen_w, data, bound_vals, min_bound, tabu_length=10, conv_tabu=10)
maxp_clusters

## End(Not run)

lixun910/rgeoda documentation built on March 19, 2021, 3:49 p.m.