Description Usage Arguments Value Author(s) Examples
Selects the optimal number of components from data using PCA. There are four different criteria available: accumulated variance explained, individual explained variance of each component, absolute value of variability or fixed number of components.
1 | PCA.selection(Data, fac.sel, varthreshold=NULL, nvar=NULL, PCnum=NULL)
|
Data |
Data matrix (with samples in columns and features in rows) |
fac.sel |
Selection criteria ("%accum", "single%", "rel.abs", "fixed.num") |
varthreshold |
Threshold for "%accum" or "single%" criteria |
nvar |
Threshold for "rel.abs" |
PCnum |
Fixed number of components for "fixed.num" |
List containing:
List containing results of PCA, with fields "eigen", "var.exp", "scores" and "loadings"
Number of components selected
Patricia Sebastian Leon
1 2 3 | data(STATegRa_S3)
ps <- PCA.selection(Data=Block2.PCA, fac.sel="single%", varthreshold=0.03)
ps$numComps
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.