Description Usage Arguments Value Author(s) See Also Examples
Uses selectCommonComps
and PCA.selection
to estimate the optimal number of common and distinctive components according to given selection criteria.
1 | modelSelection(Input, Rmax, fac.sel, varthreshold=NULL, nvar=NULL, PCnum=NULL)
|
Input |
List of two ExpressionSet objects |
Rmax |
Maximum common components (see |
fac.sel |
PCA criteria (see |
varthreshold |
Cumulative variance criteria (see |
nvar |
Relative variance criteria (see |
PCnum |
Fixed component number (see |
List containing:
Number of common components
Number of distinct components per input block
Patricia Sebastian-Leon
selectCommonComps
,PCA.selection
,omicsCompAnalysis
1 2 3 4 5 | data(STATegRa_S3)
B1 <- createOmicsExpressionSet(Data=Block1.PCA,pData=ed.PCA,pDataDescr=c("classname"))
B2 <- createOmicsExpressionSet(Data=Block2.PCA,pData=ed.PCA,pDataDescr=c("classname"))
ms <- modelSelection(Input=list(B1, B2), Rmax=4, fac.sel="single\%", varthreshold=0.03)
ms
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.