R/testDS_LMM.R

Defines functions testDS_LMM

Documented in testDS_LMM

#' Test for differential states: method 'diffcyt-DS-LMM'
#' 
#' Calculate tests for differential states within cell populations using method
#' 'diffcyt-DS-LMM'
#' 
#' Calculates tests for differential states within cell populations (i.e. differential
#' expression of cell state markers within clusters), using linear mixed models (LMMs).
#' Clusters are defined using cell type markers, and cell states are characterized by the
#' median transformed expression of cell state markers.
#' 
#' This methodology was originally developed and described by Nowicka et al. (2017),
#' \emph{F1000Research}, and has been modified here to make use of high-resolution
#' clustering to enable investigation of rare cell populations. Note that unlike the
#' original method by Nowicka et al., we do not attempt to manually merge clusters into
#' canonical cell populations. Instead, results are reported at the high-resolution
#' cluster level, and the interpretation of significant differential clusters is left to
#' the user via visualizations such as heatmaps (see the package vignette for an example).
#' 
#' This method fits linear mixed models (LMMs) for each cluster-marker combination (cell
#' state markers only), and calculates differential tests separately for each
#' cluster-marker combination. The response variable in each model is the median
#' arcsinh-transformed marker expression of the cell state marker, which is assumed to
#' follow a Gaussian distribution. There is one model per cluster per cell state marker.
#' Within each model, sample-level weights are included (by default) for the number of
#' cells per sample; these weights represent the relative uncertainty in calculating each
#' median value. (Additional uncertainty exists due to variation in the total number of
#' cells per cluster; however, it is not possible to account for this, since there are
#' separate models for each cluster-marker combination.) We also include a filtering step
#' to remove clusters with very small numbers of cells, to improve statistical power.
#' 
#' For more details on the statistical methodology, see Nowicka et al. (2017),
#' \emph{F1000Research} (section 'Differential analysis of marker expression stratified by
#' cell population'.)
#' 
#' The experimental design must be specified using a model formula, which can be created
#' with \code{\link{createFormula}}. Flexible experimental designs are possible, including
#' blocking (e.g. paired designs), batch effects, and continuous covariates. Blocking
#' variables can be included as either random intercept terms or fixed effect terms (see
#' \code{\link{createFormula}}). For paired designs, we recommend using random intercept
#' terms to improve statistical power; see Nowicka et al. (2017), \emph{F1000Research} for
#' details. Batch effects and continuous covariates should be included as fixed effects.
#' 
#' If no random intercept terms are included in the model formula, model fitting is
#' performed using a linear model (LM) instead of a LMM.
#' 
#' The contrast matrix specifying the contrast of interest can be created with
#' \code{\link{createContrast}}. See \code{\link{createContrast}} for more details.
#' 
#' By default, differential tests are performed for all cell state markers (which are
#' identified with the vector \code{id_state_markers} stored in the meta-data of the
#' cluster medians input object). The optional argument \code{markers_to_test} allows the
#' user to specify a different set of markers to test (e.g. to investigate differences for
#' cell type markers).
#' 
#' Filtering: Clusters are kept for differential testing if they have at least
#' \code{min_cells} cells in at least \code{min_samples} samples. This removes clusters
#' with very low cell counts across conditions, to improve power.
#' 
#' Weights: By default, cluster cell counts are used as precision weights within each
#' model (across samples only, i.e. within the model for each cluster); these represent
#' the relative uncertainty in calculating each median value (within each model). See
#' above for details.
#' 
#' 
#' @param d_counts \code{\link{SummarizedExperiment}} object containing cluster cell
#'   counts, from \code{\link{calcCounts}}.
#' 
#' @param d_medians \code{\link{SummarizedExperiment}} object containing cluster medians
#'   (median marker expression for each cluster-sample combination), from
#'   \code{\link{calcMedians}}. Assumed to contain a logical vector
#'   \code{id_state_markers} in the meta-data (accessed with
#'   \code{metadata(d_medians)$id_state_markers}), which identifies the set of 'cell
#'   state' markers in the list of \code{assays}.
#' 
#' @param formula Model formula object, created with \code{\link{createFormula}}. This
#'   should be a list containing three elements: \code{formula}, \code{data}, and
#'   \code{random_terms}: the model formula, data frame of corresponding variables, and
#'   variable indicating whether the model formula contains any random effect terms. See
#'   \code{\link{createFormula}} for details.
#' 
#' @param contrast Contrast matrix, created with \code{\link{createContrast}}. See
#'   \code{\link{createContrast}} for details.
#' 
#' @param weights (Optional) Whether to include precision weights within each model
#'   (across samples, i.e. within the model for each cluster); these represent the
#'   relative uncertainty in calculating each median value (within each model). Accepts
#'   values of TRUE, FALSE, or a numeric vector of custom weights. Default = TRUE, in
#'   which case cluster cell counts are used as weights.
#' 
#' @param markers_to_test (Optional) Logical vector specifying which markers to test for
#'   differential expression (from the set of markers stored in the \code{assays} of
#'   \code{d_medians}). Default = all 'cell state' markers, which are identified by the
#'   logical vector \code{id_state_markers} stored in the meta-data of \code{d_medians}.
#' 
#' @param min_cells Filtering parameter. Default = 3. Clusters are kept for differential
#'   testing if they have at least \code{min_cells} cells in at least \code{min_samples}
#'   samples.
#' 
#' @param min_samples Filtering parameter. Default = \code{number of samples / 2}, which
#'   is appropriate for two-group comparisons (of equal size). Clusters are kept for
#'   differential testing if they have at least \code{min_cells} cells in at least
#'   \code{min_samples} samples.
#' 
#' 
#' @return Returns a new \code{\link{SummarizedExperiment}} object, where rows =
#'   cluster-marker combinations, and columns = samples. In the rows, clusters are
#'   repeated for each cell state marker (i.e. the sheets or \code{assays} from the
#'   previous \code{d_medians} object are stacked into a single matrix). Differential test
#'   results are stored in the \code{rowData} slot. Results include raw p-values
#'   (\code{p_val}) and adjusted p-values (\code{p_adj}), which can be used to rank
#'   cluster-marker combinations by evidence for differential states within cell
#'   populations. The results can be accessed with the \code{\link{rowData}} accessor
#'   function.
#' 
#' 
#' @importFrom SummarizedExperiment assays rowData 'rowData<-' colData 'colData<-'
#' @importFrom lme4 lmer
#' @importFrom multcomp glht
#' @importFrom stats lm p.adjust
#' @importFrom methods as is
#' 
#' @export
#' 
#' @examples
#' # For a complete workflow example demonstrating each step in the 'diffcyt' pipeline, 
#' # see the package vignette.
#' 
#' # Function to create random data (one sample)
#' d_random <- function(n = 20000, mean = 0, sd = 1, ncol = 20, cofactor = 5) {
#'   d <- sinh(matrix(rnorm(n, mean, sd), ncol = ncol)) * cofactor
#'   colnames(d) <- paste0("marker", sprintf("%02d", 1:ncol))
#'   d
#' }
#' 
#' # Create random data (without differential signal)
#' set.seed(123)
#' d_input <- list(
#'   sample1 = d_random(), 
#'   sample2 = d_random(), 
#'   sample3 = d_random(), 
#'   sample4 = d_random()
#' )
#' 
#' # Add differential states (DS) signal
#' ix_DS <- 901:1000
#' ix_cols_type <- 1:10
#' ix_cols_DS <- 19:20
#' d_input[[1]][ix_DS, ix_cols_type] <- d_random(n = 1000, mean = 3, ncol = 10)
#' d_input[[2]][ix_DS, ix_cols_type] <- d_random(n = 1000, mean = 3, ncol = 10)
#' d_input[[3]][ix_DS, c(ix_cols_type, ix_cols_DS)] <- d_random(n = 1200, mean = 3, ncol = 12)
#' d_input[[4]][ix_DS, c(ix_cols_type, ix_cols_DS)] <- d_random(n = 1200, mean = 3, ncol = 12)
#' 
#' experiment_info <- data.frame(
#'   sample_id = factor(paste0("sample", 1:4)), 
#'   group_id = factor(c("group1", "group1", "group2", "group2")), 
#'   stringsAsFactors = FALSE
#' )
#' 
#' marker_info <- data.frame(
#'   channel_name = paste0("channel", sprintf("%03d", 1:20)), 
#'   marker_name = paste0("marker", sprintf("%02d", 1:20)), 
#'   marker_class = factor(c(rep("type", 10), rep("state", 10)), 
#'                         levels = c("type", "state", "none")), 
#'   stringsAsFactors = FALSE
#' )
#' 
#' # Prepare data
#' d_se <- prepareData(d_input, experiment_info, marker_info)
#' 
#' # Transform data
#' d_se <- transformData(d_se)
#' 
#' # Generate clusters
#' d_se <- generateClusters(d_se)
#' 
#' # Calculate counts
#' d_counts <- calcCounts(d_se)
#' 
#' # Calculate medians
#' d_medians <- calcMedians(d_se)
#' 
#' # Create model formula
#' formula <- createFormula(experiment_info, cols_fixed = "group_id")
#' 
#' # Create contrast matrix
#' contrast <- createContrast(c(0, 1))
#' 
#' # Test for differential states (DS) within clusters
#' res_DS <- testDS_LMM(d_counts, d_medians, formula, contrast)
#' 
testDS_LMM <- function(d_counts, d_medians, formula, contrast, 
                       weights = TRUE, markers_to_test = NULL, 
                       min_cells = 3, min_samples = NULL) {
  
  if (is.null(min_samples)) {
    min_samples <- ncol(d_counts) / 2
  }
  
  # markers to test
  if (!is.null(markers_to_test)) {
    markers_to_test <- markers_to_test
  } else {
    # vector identifying 'cell state' markers in list of assays
    markers_to_test <- metadata(d_medians)$id_state_markers
  }
  
  # note: counts are only required for filtering
  counts <- assays(d_counts)[["counts"]]
  cluster_id <- rowData(d_counts)$cluster_id
  
  # filtering: keep clusters with at least 'min_cells' cells in at least 'min_samples' samples
  tf <- counts >= min_cells
  ix_keep <- apply(tf, 1, function(r) sum(r) >= min_samples)
  
  counts <- counts[ix_keep, , drop = FALSE]
  cluster_id <- cluster_id[ix_keep]
  
  # weights: total cell counts per sample (after filtering)
  if (is.logical(weights)) {
    if (weights) {
      weights <- colSums(counts)
    } else {
      weights <- NULL
    }
  } else if (is.numeric(weights)) {
    stopifnot(length(weights) == ncol(d_counts))
  }
  
  # LMM/LM testing pipeline
  
  # transpose contrast matrix if created with 'createContrast' (required by 'glht')
  if (ncol(contrast) == 1 & nrow(contrast) > 1) {
    contrast <- t(contrast)
  }
  
  # extract medians and create concatenated matrix
  state_names <- names(assays(d_medians))[markers_to_test]
  meds <- do.call("rbind", {
    lapply(as.list(assays(d_medians)[state_names]), function(a) a[as.character(cluster_id), , drop = FALSE])
  })
  
  meds_all <- do.call("rbind", as.list(assays(d_medians)[state_names]))
  
  # fit models: separate model for each cluster-marker combination
  
  p_vals <- rep(NA, nrow(meds))
  
  for (i in seq_len(nrow(meds))) {
    p_vals[i] <- tryCatch({
      # data for cluster-marker i
      # note: response values are medians
      y <- meds[i, ]
      data_i <- cbind(cbind(y, weights), formula$data)  # nested 'cbind' required to handle weights = NULL
      # fit LMM if model formula contains any random effect terms; LM otherwise
      if (formula$random_terms) {
        fit <- lmer(formula$formula, data = data_i, weights = weights)
      } else {
        fit <- lm(formula$formula, data = data_i, weights = weights)
      }
      # test contrast
      test <- glht(fit, contrast)
      # return p-value
      summary(test)$test$pvalues
      # return NA as p-value if there is an error
    }, error = function(e) NA)
  }
  
  # adjusted p-values (false discovery rates)
  p_adj <- p.adjust(p_vals, method = "fdr")
  
  stopifnot(length(p_vals) == length(p_adj))
  
  # return results in 'rowData' of new 'SummarizedExperiment' object
  
  out <- data.frame(p_val = p_vals, p_adj = p_adj, stringsAsFactors = FALSE)
  
  # fill in any missing rows (filtered clusters) with NAs
  row_data <- as.data.frame(matrix(as.numeric(NA), 
                                   nrow = nlevels(cluster_id) * length(state_names), 
                                   ncol = ncol(out)))
  colnames(row_data) <- colnames(out)
  
  cluster_id_nm <- as.numeric(cluster_id)
  s <- seq(0, nlevels(cluster_id) * (length(state_names) - 1), by = nlevels(cluster_id))
  r1 <- rep(cluster_id_nm, length(state_names))
  r2 <- rep(s, each = length(cluster_id_nm))
  
  stopifnot(length(s) == length(state_names))
  stopifnot(length(r1) == length(r2))
  
  rows <- r1 + r2
  row_data[rows, ] <- out
  
  # include cluster IDs and marker names
  clus <- factor(rep(levels(cluster_id), length(state_names)), levels = levels(cluster_id))
  stat <- factor(rep(state_names, each = length(levels(cluster_id))), levels = state_names)
  stopifnot(length(clus) == nrow(row_data), length(stat) == nrow(row_data))
  
  row_data <- cbind(data.frame(cluster_id = clus, marker_id = stat, stringsAsFactors = FALSE), 
                    row_data)
  
  col_data <- colData(d_medians)
  
  # return object
  res <- SummarizedExperiment(
    meds_all, 
    rowData = row_data, 
    colData = col_data
  )
  
  res
}
lmweber/diffcyt documentation built on March 19, 2024, 5:24 a.m.