devtools::load_all()
library(reshape2)
library(ggplot2)
# define parameters -----------------------------------------------------------
parameters <- list(T_inf = 6, # from Zika paper(T_inf = 1/human recovry rate)
min_value = 0,
min_value_lf = 1,
ec = 1)
in_dir <- file.path("output", "central_estimates_from_Mordecai")
out_dir <- file.path("output", "central_estimates_from_Mordecai")
# load data -------------------------------------------------------------------
foi_covariates <- readRDS(file.path("output", "foi_data_cov_rescaled.rds"))
a_mean <- readRDS(file.path(in_dir, "a_mean_DayTemp_const_term.rds"))
b_mean <- readRDS(file.path(in_dir, "b_mean_DayTemp_const_term.rds"))
c_mean <- readRDS(file.path(in_dir, "c_mean_DayTemp_const_term.rds"))
PDR_mean <- readRDS(file.path(in_dir, "PDR_mean_DayTemp_const_term.rds"))
lf_mean <- readRDS(file.path(in_dir, "lf_mean_DayTemp_const_term.rds"))
# define variables ------------------------------------------------------------
R0_values <- foi_covariates$R0_1
temp_values <- foi_covariates$DayTemp_const_term
# extract traits estimated at observed T --------------------------------------
k_values <- a_mean[, "mean"]
beta_mh_values <- b_mean[, "mean"]
beta_hm_values <- c_mean[, "mean"]
PDR_values <- PDR_mean[, "mean"]
lf_values <- lf_mean[, "mean"]
# plot ------------------------------------------------------------------------
dat <- data.frame(temp = temp_values,
k = k_values,
beta_mh = beta_mh_values,
beta_hm = beta_hm_values,
PDR = PDR_values,
lf = lf_values)
dat_m <- melt(dat,
id.vars = "temp",
variable.name = "trait")
p <- ggplot(dat_m, aes(temp, value)) +
geom_point() +
facet_wrap(~ trait, scales = "free_y") +
scale_x_continuous(expression("Temperature " (degree*C)),
limits = c(20, 50),
breaks = seq(20, 50, 5)) +
scale_y_continuous("Trait") +
theme_bw()
ggsave(filename = file.path("figures", "traits_at_observed_T.png"), plot = p,
width = 18, height = 11, units = "cm", dpi = 300)
# derive some traits ----------------------------------------------------------
min_value <- parameters$min_value
min_value_lf <- parameters$min_value_lf
k_values[k_values < min_value] <- min_value
beta_mh_values[beta_mh_values < min_value] <- min_value
beta_hm_values[beta_hm_values < min_value] <- min_value
lf_values[lf_values < min_value_lf] <- min_value_lf
mu_values <- 1 / lf_values
eip_values <- 1 / PDR_mean[, "mean"]
m_values <- calculate_m(R0_values,
k_values,
beta_mh_values,
beta_hm_values,
mu_values,
eip_values,
parameters)
# plot ------------------------------------------------------------------------
dat_2 <- data.frame(temp = temp_values,
k = k_values,
beta_mh = beta_mh_values,
beta_hm = beta_hm_values,
PDR = PDR_values,
eip = eip_values,
lf = lf_values,
mu = mu_values,
m = m_values)
dat_m_2 <- melt(dat_2,
id.vars = "temp",
variable.name = "trait")
p <- ggplot(dat_m_2, aes(temp, value)) +
geom_point() +
facet_wrap(~ trait, scales = "free_y") +
scale_x_continuous(expression("Temperature " (degree*C)),
limits = c(20, 50),
breaks = seq(20, 50, 5)) +
scale_y_continuous("Trait") +
theme_bw()
ggsave(filename = file.path("figures", "traits_at_observed_T_derived.png"), plot = p,
width = 18, height = 15, units = "cm", dpi = 300)
# save m values ---------------------------------------------------------------
write_out_rds(m_values, out_dir, "m_mean_DayTemp_const_term")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.