#' BICfunction_glasso
#'
#' Function for the choice of the regularization parameters
#' for the inverse error covariance matrix based on BIC
#'
#' @param sbic var-cov matrix
#' @param gamma1 regularization parameter for the inverse error covariance matrix
#' @param ndata number of data points
#' @return BIC_values_glasso BIC values
#'
#' @keywords internal
#' @noRd
BICfunction_glasso <- function(gamma1, sbic, ndata){
#########
# INPUT #
#########
# sbic : var-cov matrix
# gamma1 : regularization parameter for the inverse error covariance matrix
# ndata : number od data points
##########
# OUTPUT #
##########
# BIC_values_glasso: BIC values
# Estimate the autoregressive coefficients using SPG algorithm
FIT_glasso<-glasso::glasso(s = sbic, rho=gamma1)
FIT_glasso$wi
# Compute the BIC
NLog_lik_glasso<-(- FIT_glasso$loglik) # negative log-lik
df_glasso<-length(which(FIT_glasso$wi!=0))
BIC_value_glasso<-(2*NLog_lik_glasso+log(ndata)*df_glasso)
return(BIC_value_glasso)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.