#' BICfunction_grplasso
#'
#' Function for the choice of the regularization parameters
#' for the autoregressive coeffcients based on BIC
#'
#' @param Ybic vector of dimension NJ x 1 of dependent variables
#' @param Xbic matrix of dimension NJ x J x P of indipendent variables
#' @param lambda1 regularization parameter for the autoregressive coeffcients
#' @param indexbic group structure
#' @return BIC_values_glasso BIC values
#'
#' @keywords internal
#' @noRd
BICfunction_grplasso <- function(lambda1, Ybic, Xbic, indexbic){
#########
# INPUT #
#########
# Ybic : vector of dimension NJ x 1 of dependent variables
# Xbic : matrix of dimension NJ x J?P of indipendent variables
# lambda1 : regularization parameter for the autoregressive coeffcients
# indexbic : group structure
##########
# OUTPUT #
##########
# BIC_values: BIC values
# Estimate the autoregressive coefficients using SPG algorithm
FIT_grplasso<-grplasso::grplasso(x = Xbic, y = Ybic, index=indexbic, lambda = lambda1,
model = grplasso::LinReg(), center = F, control = grplasso::grpl.control(trace=0))
# Compute the BIC
NLog_lik_grplasso<-FIT_grplasso$nloglik # negative log-lik
df_grplasso<-length(which(FIT_grplasso$coefficients!=0))
BIC_value_grplasso<-(2*NLog_lik_grplasso+log(length(Ybic))*df_grplasso)
return(BIC_value_grplasso)
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.