inst/shinyApp/server_funcs/bioclim_methods.R

observe({
  if(!is.null(data_extraction())){
    # Suggest variables to fit ellipsoid accoring to strog correlations
    if(!is.null(summs_corr_var()))
      var_suggest <- summs_corr_var()$descriptors
    else
      var_suggest <- names(data_extraction())
    updateSelectInput(session,"biosBioclim",
                      choices = names(data_extraction()),selected = var_suggest)
  }
})




output$brand <- renderUI({
  if(!is.null(data_partition()$type)){
    checkboxInput("bpartition","Use train data generated in ntbox to fit the model",
                  value = TRUE)
  }
  #else{
  #  numericInput("ertestprop","Train proportion",0.7,min = 0.01,
  #               max=0.99)
  #  actionButton("run_part","Go!!!",styleclass = "primary")
  #}

})

# ---------------------------------------------------------------------
# Fit Bioclim model
# ---------------------------------------------------------------------


bioclim_model_all_all_train <- eventReactive(input$run_bioclim_all_all_train,{
  if(!is.null(data_extraction())){
    if(!is.null(occ_extract()) && input$selectMBio == "wWorld" && input$trainBio == "wWorld"){
      if(input$bpartition){
        niche_data <- data_partition()[data_partition()$type=="train", ]
      }
      else{
        niche_data <- occ_extract()$data
      }
      model_train <- dismo::bioclim(niche_data[,input$biosBioclim])
      model <- predict(rasterLayers()[[input$biosBioclim]], model_train)
      return(list(train=model_train,prediction=model))
    }
    else
      return()
  }
})


output$bio_response_all_all_train <- renderPlot({
  if(!is.null(bioclim_model_all_all_train()) && input$selectMBio == "wWorld" && input$trainBio == "wWorld")
    return(response(bioclim_model_all_all_train()$train))
})


bioclim_model_all_m_train <- eventReactive(input$run_bioclim_all_m_train,{
  if(!is.null(data_extraction())){
    if(!is.null(occ_extract_from_mask()) && input$selectMBio == "wWorld" && input$trainBio == "mLayers"){
      if(input$bpartition){
        niche_data <- data_partition()[data_partition()$type=="train", ]
      }
      else{
        niche_data <- occ_extract_from_mask()$data
      }
      model_train <- bioclim(niche_data[,input$biosBioclim])
      model <- predict(rasterLayers()[[input$biosBioclim]], model_train)
      return(list(train=model_train,prediction=model))
    }
    else
      return()
  }
})


output$bio_response_all_m_train <- renderPlot({
  if(!is.null(bioclim_model_all_m_train()) && input$selectMBio == "wWorld" && input$trainBio == "mLayers")
    return(response(bioclim_model_all_m_train()$train))
})


# ---------------------------------------------------------------------
# Fit Bioclim model m raster
# ---------------------------------------------------------------------


bioclim_model_m_all_train <- eventReactive(input$run_bioclim_m_all_train,{
  if(!is.null(data_extraction())){
    if(!is.null(occ_extract()) && input$selectMBio == "mLayers" && input$trainBio == "wWorld"){
      if(input$bpartition){
        niche_data <- data_partition()[data_partition()$type=="train", ]
      }
      else{
        niche_data <- occ_extract()$data
      }
      model_train <- bioclim(niche_data[,input$biosBioclim])
      model <- predict(define_M_raster()[[input$biosBioclim]], model_train)
      return(list(train=model_train,prediction=model))
    }
    else
      return()
  }
})



bioclim_model_m_m_train <- eventReactive(input$run_bioclim_m_m_train,{
  if(!is.null(data_extraction())){
    if(!is.null(occ_extract_from_mask()) && input$selectMBio == "mLayers" && input$trainBio == "mLayers"){
      if(input$bpartition){
        niche_data <- data_partition()[data_partition()$type=="train", ]
      }
      else{
        niche_data <- occ_extract_from_mask()$data
      }
      model_train <- bioclim(niche_data[,input$biosBioclim])
      model <- predict(define_M_raster()[[input$biosBioclim]], model_train)
      return(list(train=model_train,prediction=model))
    }
    else
      return()
  }
})



output$bio_response_m_all_train <- renderPlot({
  if(!is.null(bioclim_model_m_all_train()) && input$selectMBio == "mLayers" && input$trainBio == "wWorld")
    return(response(bioclim_model_m_all_train()$train))
})

output$bio_response_m_m_train <- renderPlot({
  if(!is.null(bioclim_model_m_m_train()) && input$selectMBio == "mLayers" && input$trainBio == "mLayers")
    return(response(bioclim_model_m_m_train()$train))
})


output$downBiclimRas <- downloadHandler(
  filename <- function() return(paste0("BioclimModelNTB_trainArea_",
                                       as.character(input$trainBio),"projected_area_",
                                       as.character(input$selectMBio),".asc")),
  content <- function(file){
    if(!is.null(bioclim_model_all_all_train()) && input$selectMBio == "wWorld" && input$trainBio == "wWorld"){
      return(writeRaster(bioclim_model_all_all_train()$prediction,file))
    }
    if(!is.null(bioclim_model_m_all_train()) && input$selectMBio == "mLayers" && input$trainBio == "wWorld"){
      return(writeRaster(bioclim_model_m_all_train()$prediction,file))

    }
    if(!is.null(bioclim_model_all_m_train()) && input$selectMBio == "wWorld" && input$trainBio == "mLayers"){
      return(writeRaster(bioclim_model_all_m_train()$prediction,file))
    }
    if(!is.null(bioclim_model_m_m_train()) && input$selectMBio == "mLayers" && input$trainBio == "mLayers"){
      return(writeRaster(bioclim_model_m_m_train()$prediction,file))
    }
  }
)
luismurao/ntbox documentation built on May 9, 2024, 8:24 p.m.